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Abstract: The least squares weighted residual method was used in this work to solve 

the boundary value problem (BVP) of an Euler column of length l fixed at x = 0, and 

pinned at x = l. Polynomial shape (spline) functions for Euler columns with fixed-

pinned ends were used to obtain one – and two parameter buckling shape functions in 

terms of unknown generalised parameters. The one and two parameter buckling shape 

functions were used to construct least squares weighted residual integral statements of 

the boundary value problem. The least squares weighted residual statements 

simplified the boundary value problem (BVP) to algebraic eigenvalue – eigenvector 

problems. The solution for non trivial cases yielded characteristic buckling equations 

which were solved to obtain the buckling loads. One parameter coordinate shape 

function yielded the critical load as Qcr = 21EI/l
2
, while the two parameter buckling 

shape function yielded Qcr = 20.34614EI/l
2
. One parameter least squares weighted 

residual solution yielded a relative error of 4 % while the two parameter least squares 

weighted residual solution yielded a relative error of 0.77% compared to the exact 

solution. 

Keywords: Least squares weighted residual method, elastic buckling, Euler column 

buckling, critical buckling load, buckling load, buckling mode. 

  
INTRODUCTION 

Background 

Columns are common structural members in building and machine structures. Under compressive forces they 

are prone to failures called buckling. Elastic buckling problems are thus frequently encountered in the design of building 

and machine structures; and this entails the determination of critical loads at which buckling failures can occur for 

different types of end support conditions [1-6]. 

 

Two general approaches are used to solve elastic buckling problems, namely: analytical (or mathematical) and 

approximate (or numerical) methods [7-11]. The mathematical methods involve the methods available for solving the 

governing ordinary linear differential equations of equilibrium subject to the specific restraint conditions [1]. 

Mathematical methods usually yield mathematical solutions for the buckling loads, and buckling shapes of the boundary 

value problem. The mathematical methods are: Fourier series method, Laplace transform methods, D operator methods, 

variation of parameters, method of trial functions etc. In the approximate (or numerical) methods, the energy methods, 

variational principles and discretizations of the governing equations are used to obtain approximations to the buckling 

loads and buckling shapes of the problems. Some numerical methods include finite element method, finite difference 

method, weighted residual methods, collocation methods, etc. Approximate methods have the advantage that they can 

solve certain elastic buckling problems that cannot be easily solved using the exact analytical methods. Approximate 

methods have been applied to solve the column buckling problem, by various researchers, namely Zdravkovic et al., [12], 

Li et al., [13], Huang and Li [14], Kalakowski et al., [15], Reddy [16], Yuan and Wang [17], Atay [18], Okay et al., [19] 

and Ofondu et al., [20]. 

 

RESEARCH AIM AND OBJECTIVES 

The research aim is to use the least squares weighted residual method to determine the critical buckling load of 

Euler columns with fixed pinned ends. The specific objectives are: 
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 To express the governing ordinary differential equation (ODE) of elastic buckling of Euler columns as least squares 

weighted residual integrals using one parameter buckling displacement modal shape functions that satisfy the 

boundary conditions at the fixed and pinned ends. 

 To solve the one parameter and two parameter least squares weighted integral statements of the boundary value 

problem (BVP) of elastic buckling of Euler columns, and obtain the algebraic equivalent eigenvalue eigenvector 

problem for non-trivial solutions. 

 To solve the algebraic eigenvalue eigenvector problem for non-trivial solutions and obtain the characteristic buckling 

equations for the one parameter and two parameter buckling shape functions. 

 To solve the algebraic eigenvalue problem and obtain the critical buckling load for the one-parameter and two 

parameter buckling shape functions used. 

 

Theory of elastic buckling 

Assumptions 

The study used the Euler’s theory of elastic buckling of columns which is based on the following basic 

assumptions: 

 The column’s longitudinal coordinate axis is straight before the application of compressive force. 

 The column cross-section is prismatic. 

 The column is made of isotropic, homogeneous material. 

 Column self weight is disregarded. 

 Failure of the column is as a result of buckling only. 

 Decrease in the longitudinal dimension of the column is small and can be disregarded. 

 

Governing equations 
The free body diagram of an infinitesimal segment of an Euler column under axial compression is as shown in 

Figure-1. 

 

 
Fig-1: Free body diagram of an infinitesimal column segment 

 

The ordinary differential equation of equilibrium of elastic column buckling is formulated using principles that 

are similar to those for flexural behaviour of beams, except that the effects of axial compressive forces are included in the 

consideration of forces for equilibrium. Considering equilibrium of forces in the horizontal direction, 

0
( )

( ) ( )
x

Q x
F Q x x Q x

x


    


    (1) 

 

0
( )Q x

x
x


 


      (2) 

 

or 0
( )Q x

x





      (3) 

 

Q(x) is a constant. 

In the Figure-1, M(x) is the bending moment at the left end, 
( )

( ) ( ) ( )
M x

M x d M x M x x
x


   


 is the 

bending moment at the right end x apart from the left end. Similarly, V(x) is the shear force at the left end, 
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( )
( )

V x
V x x

x


 


 is the shear force at the right end. Q(x) is the axial force at the left end. ( )

Q
Q x x

x


 


 is the 

axial force at the right end. p(x) is the distribution of transverse load on the column w is transverse deflection.  

 

Considering equilibrium of forces in the vertical direction, 

0
( )

( ) ( ) ( )
V x

V x x V x p x x
x


     


  (4) 

 

( )
( )

V x
x p x x

x


   


    (5) 

 

( )
( )

V x
p x

x


 


     (6) 

 

Considering equilibrium of forces in rotation, about point O, at the right end of the column segment, 

0
2

( )
( ) ( ) ( ) ( ) ( )

M x x
M x x M x p x x V x x Q x w

x

 
         


   (7) 

 

2

0
2

( ) ( )
( ) ( ) ( )

M x x
x p x V x x Q x w

x

 
      


     (8) 

 

2

( )
( ) ( ) ( )

M x w x
Q x V x p x

x x

  
  

 
      (9) 

 

In the limit as x  0, 

 

( ) ( )
( ) ( )

d M x d w x
Q x V x

d x d x
         (10) 

 

By differentiation of Equation (10) with respect to x, we have: 

 
( ) ( ) ( )

( ) ( )
d d M x d w x d V x

Q x p x
d x d x d x d x

         (11) 

 

Simplifying, 

2 2

2 2

( ) ( )
( ) ( )

d M x d w x
Q x p x

d x d x

         (12) 

 

The bending moment – displacement relationship for Euler – Bernoulli beam theory is: 

2

2

( )
( )

d w x
M x E I

d x

           (13) 

 

Then, Equation (12) becomes, on using Equation (13) 

2 2 2

2 2 2

( ) ( )
( )

d d w x d w x
E I Q p x

d x d x d x

 
    

 
      (14) 

 

For prismatic cross-sections, 
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4 2

4 2

( ) ( )
( )

d w x d w x
E I Q p x

d x d x

           (15) 

 

or, 

4 2

4 2

( ) ( )
( ) ( )

d w x d w x
E I Q x p x

d x d x

        (16) 

 

Where, 

0 .x l    

 

Equation (16) which is a fourth order linear ordinary differential equation in terms of w(x) is the governing 

equation for elastic buckling of Euler columns. 

 

METHODOLOGY 
A one term least squares weighted residual solution to the elastic buckling problem is found by assuming a one 

parameter displacement field as: 

 

1 1( ) ( )w x a x         (17) 

 

Where a1 is an unknown generalised displacement parameter and 1(x) is the displacement shape function 

chosen to satisfy the boundary conditions. The least squares weighted residual integral then becomes 

10

0
( )

( ( ) ( ) )

l

ivw x
E Iw x Q w x d x

a


 


      (18) 

 

 
1 1 1 1 1

0

0( ) ( ( ) ) ( ( ) )

l

iv
x E I a x Q a x d x        (19) 

 

 1 1 1 1

0

0( ) ( ) ( )

l

iv Q
x a x x d x

E I
         (20) 

 

1 1 1 1 1

0 0

0( ) ( ) ( ) ( )

l l

iv Q
a x x d x x x d x

E I

  
      

  
     (21) 

 

1 1 1 1 1 0( )
g

a k k         (22) 

 

1 1 1 1

0

( ) ( )

l

iv
k x x d x         (23) 

 

1 1 1 1

0

( ) ( )

l

g
k x x d x         (24) 

 

Q

E I
          (25) 
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 is the buckling load factor. For non-trivial solutions 1 0 ,a    and the characteristic buckling equation for the 

one-parameter least squares weighted residual solution becomes the algebraic eigenvalue – eigenvector problem. 

 

1 1 1 1 0
g

k k          (26) 

 

 

Expanding and solving, 

1 1

1 1 g

k

k


          (27) 

 

The critical buckling load can thus be determined. 

For two parameter displacement fields,  

1 1 2 2( ) ( ) ( )w x a x a x          (28) 

 

Where a1 and a2 are the two unknown generalised parameters used to define the displacement field, and 1(x), 

2(x) are the displacement buckling shape functions chosen to satisfy the boundary conditions. 

 

The least squares weighted residual integrals become the system of two equations: 

1 1 2 2 1 1 2 2

1
0

0
( )

( ( ) ( )) ( ( ) ( ))

l

ivw x Q
a x a x a x a x d x

a E I

  
       

    (29) 

 

1 1 2 2 1 1 2 2

2
0

0
( )

( ( ) ( )) ( ( ) ( ))

l

ivw x Q
a x a x a x a x d x

a E I

  
       

    (30) 

 

Expanding, 

1 1 1 1 1 2 2 1 2 1

0 0 0 0

0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

l l l l

iv ivQ Q
a x x d x x x d x a x x d x x x d x

E I E I

   
               

   
   
     

           …(31) 

 

1 1 2 1 2 2 2 2 2 2

0 0 0 0

0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

l l l l

iv ivQ Q
a x x d x x x d x a x x d x x x d x

E I E I

   
               

   
   
      

           …(32) 

 

In matrix format, 

1 1 1 1 1 2 1 2 1

22 1 2 1 2 2 2 2

0
g g

g g

k k k k c

ck k k k

      
   

      

        (33) 

 

Where  

1 2 2 1

0

( ) ( )

l

iv
k x x d x            (34) 

 

1 2 2 1

0

( ) ( )

l

k g x x d x            (35) 
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2 1 1 2

0

( ) ( )

l

iv
k x x d x            (36) 

 

2 1 1 2

0

( ) ( )

l

k g x x d x            (37) 

 

2 2 2 2

0

( ) ( )

l

iv
k x x d x            (38) 

 

2 2 2 2

0

( ) ( )

l

k g x x d x            (39) 

 

For non-trivial solutions, 

1

2

0
a

a

 
 

 

  

 

The buckling equation becomes: 

1 1 1 1 1 2 1 2

2 1 2 1 2 2 2 2

0
g g

g g

k k k k

k k k k

   


   

       (40) 

 

Expanding, the characteristic buckling equation is: 

1 1 1 1 2 2 2 2 1 2 1 2 2 1 2 1 0( ) ( ) ( ) ( )
g g g g

k k k k k k k k              (41) 

 

The characteristic buckling equation is a quadratic equation with two roots from which the buckling loads are 

determined. 

 

RESULTS 

Elastic buckling problem considered 
The Euler column considered was fixed at one end, considered x =0, end pinned at the other end, x = l as shown 

in Figure-2. 

 

 
Fig-2: 

 

The elastic buckling problem is given on the domain 0 x l   by Equation (16). The boundary conditions are 

0 0 0 0( ) ( ) ( )w x x w x              (42) 

 

0( ) ( )w x l w x l             (43) 
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A suitable displacement buckling shape function that satisfies the boundary conditions at x = 0, and x = l in a 

one-parameter least squares weighted residual formulation is: 

     
4 3 2

1 1 1 2 5 1 5( ) ( ) . .
x x x

w x a x a
l l l

 
     

 
      (44) 

 

For a two parameter buckling modal shape function, the second buckling modal shape function that satisfies the 

boundary conditions is: 

     
5 4 3

2

7 4

3 3
( )

x x x
x

l l l
            (45) 

 

 

One parameter least squares weighted residual solution 
By differentiation, 

1 3

2 4
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iv
x

l
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2

1 4 3 2

1 2 1 5 3
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x x
x

l l l
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     
4 3 2
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0 0

2 4 1 8
2 5 1 5

.
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l l

iv x x x
k x x d x d x

l l ll l
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4 3 22
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0 0
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2 5 1 5
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l l

g

x x x x x
k x x d x d x

l l l ll l l

        
                 
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Then, 

1 3

1 8 0 0 8 5 7 1 4 2 8 6
0

. . Q
a

l E Il

 
  

 
        (50) 

 

The characteristic buckling equation is the homogeneous equation: 

3

1 8 0 0 8 5 7 1 4 2 8 6
0

. .Q

E I ll

           (51) 

 

Solving, 

2
2 1

c r

E I
Q

l

            (52) 

 

Two parameter least squares weighted residual solution 
By differentiation, 

3 2

2 5 4 3

2 0 2 8 8
( )

x x x
x

l l l

             (53) 

 

2 5 4

1 2 0 5 6
( )

x
x

l l

             (54) 

 

By integration, 
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     
4 3 2

1 2 5 4 3

0
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.
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0 0 4 2 5 7 1 4 2 9.

l


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0
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3 3

.
l

x x x
k d x

l l ll l

 
    

        (57) 
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0
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0
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.
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  
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Then, the least squares weighted residual equations become: 

1 23 3

1 8 0 0 8 5 7 1 4 2 8 6 0 8 0 0 4 2 8 5 7 1 4 2 9
0

. . . .
a a

l ll l

   
        
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    (61) 

 

1 23 3
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0

. . . .
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        

   
   (62) 

 

In matrix form, 
2 2

1

2 2
2

1 8 0 0 0 8 5 7 1 4 2 8 6 0 8 0 0 0 4 2 8 5 7 1 4 2 9 0

00 8 0 0 0 4 2 8 5 7 1 4 2 0 6 0 9 5 2 3 7 3 4 0 0 2 5 3 9 6 8 2 4

( . . ) ( . . )

( . . ) ( . . )

al l
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        
     
      

  (63) 

 

For non-trivial solutions, 

1

2

0
a

a

 
 

 

  

 

The characteristic buckling equation then becomes 

1 8 0 0 0 8 5 7 1 4 0 8 0 0 0 4 2 8 5 7
0

0 8 0 0 0 4 2 8 5 7 0 6 0 9 5 2 4 0 0 2 5 3 9 6 8

( . . ) ( . . )

( . . ) ( . . )

   


   
     (64) 

 

Where 
2

2 Q l
l

E I
             (65)  
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Thus, expanding, 
2

1 8 0 0 0 8 5 7 1 4 0 6 0 9 5 2 4 0 0 2 5 3 9 6 8 0 8 0 0 0 4 2 8 5 7 0( . . ) ( . . ) ( . . )           (66) 

 

Simplifying, 
2

8 7 1 3 6 2 1 1 3 5 8 9 2 0. .             (67) 

 

Solving, 

2
2

2 0 3 4 6 1 4.
Q l

E I
            (68) 

 

Then 

2
2 0 3 4 6 1 4.

c r

E I
Q

l

           (69) 

 

The exact solution for critical elastic buckling load (Qcr exact) of Euler column with fixed pinned ends is 

e x a c t 2
2 0 1 9 0 7.

c r

E I
Q

l

         (70) 

 

DISCUSSION 
The elastic buckling problem of Euler columns under axial compressive load Q when the ends are fixed at x = 0, 

and pinned at x = l has been solved in this work using the least squares weighted residual method. One and two 

parameter buckling displacement shape functions constructed as polynomial splines that satisfy all the boundary 

conditions were used to express the boundary value problem as Equation (50) for the one – parameter buckling shape 

function case, and as Equations (61) and (68) for the two parameter buckling shape function. The critical buckling load 

for the one parameter case was found as Equation (52) by solving the characteristic buckling equation expressed as 

Equation (51). 

 

Similarly, the two parameter buckling shape function resulted in the algebraic eigenvalue – eigenvector problem 

represented by Equation (63). The corresponding characteristic buckling equation was found as Equation (64). Equation 

(64) yielded on expansion, a quadratic equation (Equation (67)) in terms of  which was solved to obtain the two roots 

with the root that gave the lowest value of Q used to obtain the critical buckling load. 

 

Comparison of the critical buckling load results of one parameter and two parameter buckling shape functions, 

with the exact critical buckling load given as Equation (70) shows the one parameter solution has a relative difference of 

41% while the two parameter least squares weighted residual solution has a relative difference of 0.77%. This work 

illustrates the effectiveness of the least squares weighted residual method in the elastic buckling analysis of Euler 

columns with one end fixed and the other end pinned for the case of axial compressive load, Q. 

 

CONCLUSIONS 
         The conclusions of the study are as follows: 

 The least squares weighted residual method reduces the solution of the boundary value problem of elastic buckling 

of Euler columns represented by a fourth order ordinary differential equation to an algebraic eigenvalue eigenvector 

problem. 

 The least squares weighted residual method gives reasonably accurate solution to the elastic buckling problem of 

Euler column with fixed pinned end even with a one parameter buckling shape function provided all the boundary 

conditions are satisfied. 

 The accuracy of the method improves with the increase in the number of modal buckling shape functions, provided 

all the buckling shape functions satisfy all the boundary conditions. 

 The problem is simplified to the computation of elastic stiffness and geometric stiffness terms in the matrix 

representing the buckling problem in the formulation. 
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