G OPEN ACCESS Scholars International Journal of Biochemistry

Abbreviated Key Title: Sch Int J Biochem ISSN 2616-8650 (Print) |ISSN 2617-3476 (Online) Scholars Middle East Publishers, Dubai, United Arab Emirates Journal homepage: https://scholarsmepub.com/sijb/

Review Article

Review of Medicinal Plants with Antianaemic Activity Found in Nigeria

Abubakar Amali Muhammad^{1*}, Rukayyah Bandi Ibrahim²

¹Department of Pharmacology and Toxicology Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University Sokoto, Nigeria ²Department of Pharmacology and Therapeutics, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Nigeria

DOI:10.21276/sijb.2019.2.8.3

| Received: 09.08.2019 | Accepted: 22.08.2019 | Published: 30.08.2019

*Corresponding author: Abubakar Amali Muhammad

Abstract

Plants have been in used as a source of medicinal substances for centuries and the utilization of these plants for this purpose are on the increase. There has been a growing concern on the lack of database of some of these medicinal plants therefore; the present study aims to provide an index of Nigerian plants with antianaemic potentials. The methodology employed involves extensive search and literature review of various local and international peer-reviewed journals that focused on Nigeria plants with antianaemic activity used by the people in different parts of the country. The scientific search engines used in this study included the Google scholar, (https://scholar.google.com) and PubMed (www.ncbi.nlm.nih.gov/pubmed). The study database were research articles and other scientific write-ups known for their academic importance, covering different aspects of the plant species (Botany, places where the plants are commonly found, parts of the plant used and the type of anaemia it ameliorates) dating from 2005 to 2017.

Keywords: Medicinal plants, antianaemic, database, literature review, search engines.

Copyright @ 2019: This is an open-access article distributed under the terms of the Creative Commons Attribution license which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use (NonCommercial, or CC-BY-NC) provided the original author and source are credited.

INTRODUCTION

Plants have been in used as a source of medicinal substances for centuries and the utilization of these plants for this purpose is on the increase. It believed that about 80% of the world population depends on herbal preparations to meet their health demands [1]. From time immemorial millions of Nigerian inhabitants have been using closer to 8,000 species of medicinal herbs for their health care demands [2] and about 13,000 plant species have been used in form of teas, extracts, or pure substances worldwide [3]. Plants are generally believed to be safe and attest to be effective against certain diseases [1]. The medicinal importance of these plants is due to the presence of some active chemical components that generates a distinct physiological effect on the body. The extremely valuable of these active chemical components of plants are alkaloids, tannins, flavonoids, and phenolic compounds [4].

Anaemia is one of the conditions that were claimed to be treated using herbal extracts because they are readily available and safer as compared to synthetic drugs and may be used without or with minimum side effects [5]. Anaemia is a condition characterized by a decreased amount of circulating red blood cells or in the hemoglobin level and an associated reduced ability to ferry oxygen [6]. It has many precipitating risks factors that can develop independently but most of the times co-occur. These factors may be hereditary, such as hemoglobinopathies; or heavy blood loss due to infections like malaria, intestinal menstruation, parasites and chronic infection like tuberculosis, cancer and AIDS, it can also be diet related, which iron includes insufficiency as well as insufficiencies in other vitamins and minerals, such as folic acid, vitamins A and B12, riboflavin and copper [7].

use of non-steroidal anti-Also, the inflammatory drugs and other hemotoxic drugs for a well as exposure to poisonous longer duration as chemicals such as phenyl hydrazine have also been associated with the development of anemia [8]. Susceptibility increases in pregnant women due to increased need for the growing fetus [9] Deficiency of well-functioning red blood cells leads to a decreased oxygen-carrying capacity which manifest as body weakness, fatigue, pallor, exertional dyspnea, increased cardiac output, vasodilation, increased morbidity and mortality, and decreased quality of life. The cardiovascular adaptations to chronic anemia,

tachycardia, increased cardiac output, and vasodilation can worsen the condition of patients with underlying cardiovascular disease [10].

Anaemia generates a grievous health problem in many tropical countries including Nigeria due to the high prevalence of malaria and other parasitic infections which could leads to decrease hemoglobin [11]. Millions of people have anemia because any disease that can cause blood deficit or loss is most of the times connected with anemia [11]. Current orthodox treatments available for treating Anaemia are associated with numerous limitations including Gastro- intestinal disturbances, delayed absorption associated with iron therapy, hypertension and thrombotic complications associated with erythropoietin etc. [12]. The aim of this review is to provide an index of Nigerian plants with antianaemic potentials.

METHODOLOGY

Literature in various local and international peer-reviewed journals that focused on Nigeria plants with antianaemic activity that are used by the people in any part of the country was extensively searched. The scientific search engines used in this study were the Google scholar (https://scholar.google.com) and PubMed (www.ncbi.nlm.nih.gov/pubmed). The study database included research articles and other scientific write-ups, known for their academic importance, covering different aspects of the plant species (Botany, places were the plants are commonly found, parts of the plant used and the type of anaemia) dating from 2005 to 2017. The search strategy used, as employed by Félix-Silva et al. contained one or a combination of the following terms "Antianaemic Nigerian plants" or "Nigerian antianaemic plants". "Nigerian hematinic plants", Hematinic Nigerian plants", "plants use in treating anaemia in Nigeria" "Plants use in treating anaemia in southern Nigeria", "Nigerian antianaemic plants" or "Antianaemic plants" Search results were screened for relevance in the study. Only literature published in English that reported antianaemic effects (including human, animal, and in vitro studies) of medicinal plants that can be found in Nigeria were included. Information on antianaemic effect of the plants and type of anaemia was extracted from the consulted literature [Table 1].

S/N o	FAMILY NAME	BOTANICAL NAME	OTHER NAMES	PLACE COMMO NLY FOUND	PART(s) USED	TYPE OF ANAEMIA	REFERENCES
1	Poaceae	Cymbopogon citrates	Lemon grass	Widely distributed	aqueous extract of leaves	Plasmodium Berghei induced anemia in mice	Abubakar et al. [13]
2	Anacardiaceou s	Mangifera indica	Mango, mangwaro	Widely distributed	stem bark aqueous extract	PHZ induced hemolytic anaemia in rats	Sani <i>et al.</i> [14].
3	Poaceae	Sorghum bicolor (L.) Moench stem bark	Guinea corn, dawa	North	stem bark aqueous extract	Iron deficiencie anemia in rats	Oladiji <i>et al</i> . [15].
4	Caesalpiniacea e	Detarium microcarpum	sweet detar, sweet dattock or tallow tree	Widely distributed	Stem bark dried, powdered and taken in pap	Traditional use	Gbadamosi <i>et al</i> . [16]
5	Myrtaceae	Psidium guajava	Guava	Widely distributed	aqueous extract of leaves	Plasmodium Berghei induced anemia in mice	Abubakar <i>et al.</i> [13]
6	Moraceae	Ficus sur	bloom cluster fig or cape fig	Widely distributed	methanolic stem bark and fruit extracts	PHZ induced hemolytic anaemia in rats	Adebayo et al. [17]
7	Euphorbiaceae	Jatropha tanjorensis Ellis & Saroja	hospital too far, lapalapa.	Widely distributed	aqueous leaves extract	PHZ induced hemolytic anaemia in rabbits	Idu <i>et al</i> . [8].
8	Sterculiaceae	Theobroma cacao	сосоа	South	The bark is boiled and mixed with hot pap	Traditional use	Gbadamosi <i>et al.</i> [16]
9	Combretaceae	Terminalia glaucescens			aqueous extract of leaves	Plasmodium Berghei induced anemia	Abubakar et al. [13]
10	Asteraceae	Vernonia amygdalina Del.	Bitter leave, Shuwaka	Widely distributed	leaves	Sickle cell anemia (Review article)	Kunle <i>et al.</i> [18]
11	Meliaceae	Khaya senegalensis	Madaci, African mahogany,	Widely distributed	stem bark aqueous extract	PHZ induced hemolytic anaemia in rats	Sanni et al. [14]
12	Apocynaceae	Parquentina nigrescens			aqueous extract of leaves	Plasmodium Berghei induced anemia	Abubakar et al. [13]

Table-1: Result of the literature search

13	Zingiberaceae	Zingiber officinale	Ginger, citta	North	aqueous extract of rhizome	Plasmodium Berghei induced anemia	Abubakar et al .[13]
14	Joliffieae	Telfairia occidentalis	Fluted pumpkin	South /south	aqueous leaves extract	PHZ induced hemolytic anaemia in rats	
15	Sterculiaceae	Waltheria indica			leaves are squeezed with water and little honey is added to the preparation.	Ethnobotanical survey	Gbadamosi <i>et al.</i> [[16]
16	Euphorbiaceae	Phyllanthus amarus Schum.	Stone breaker	Widely distributed	Leaves and seeds	Sickle cell anaemia (Review article)	Kunle <i>et al.</i> [18]
17	Zingiberaceae	Curcuma longa L. Tumeric Atale pupa	Turmeric, kurkur, Atale pupa	Widely distributed	Rhizome	Sickle cell anaemia (Ethnobotanical survey)	Gbadamosi et al. [19]
18	Amaranthaceae	Amaranthus hybridus	green amaranth, alehu	Widely distributed	Aqueous extract of leaves	PHZ induced hemolytic anaemia in rats	Ogbe et al. [20]
19	Zingiberaceae	Aframomum melequeta	alligator pepper, gorar yaji	North ans south	Fruits are dried and ground into powder.	Ethnobotanical survey	Gbadamosi et al. [16]
20	Menispermace ae	Cissampelos owariensis			Root, whole plan	Ethnobotanical survey	Olowokudejo <i>et al.</i> [21].
21	Asteraceae	Vernonia colorata	Eriro-Ijebu	Widely distributed	Leaves, roots	Ethnobotanical survey	Olowokudejo <i>et al.</i> [21].
22	malvaceae	Hibiscus sabdariffa	Roselle, sure	Widely distributed	flower	PHZ induced haemolytic anaemia in rabbits	Ologundudu <i>et al.</i> [22].
23	Combretaceae	Terminalia catappa	tropical- almond,tuwon biri	Widely distributed	Fallen leaves and leaves of Parquentina Nigrescens are boiled in water.	Ethnobotanical survey	Gbadamosi <i>et al.</i> [19]
24	Zingiberaceae	Aframomum melegueta	Aligator pepper		fruits	Ethnobotanical survey	Gbadamosi et al. [19]
25	Euphorbiaceae	Jatropha	реррег	Widely distributed	Ethanolic extract of leaves	Chloroform induced anaemia in rats	Nwaka <i>et al</i> . [1]
26	Annonaceae	curcas Xylopia aethiopica	bitter wood		Fruits H. madagascariensis bark and are boiled in water.	Ethnobotanical survey	Gbadamosi <i>et al.</i> [16]
27	Euphorbiaceae	Manihot esculenta Crantz	Cassava, rogo	Widely cultivated	Fresh leaves	Ethnobotanical survey	Bayengue et al. [23]
28	Fabaceae	Pterocarpus erinaceus	barwood		Aqueous extract of steam bark	PHZ induced haemolytic anaemia in rats	Modibbo et al. [24].
29	Hypericaceae	Harungana madagascarien sis			Steam bark 70:30 ethanol water extract	PHZ induced haemolytic anaemia in rats	Olugbenga et al. [25]
30	Dilleniaceae	Tetracera alnifolia			Bark boiled in water.	Ethnobotanical survey	Gbadamosi et al. [25]
31	Convolvulacea e	Ipomea sp. Linn		Widely distributed	Fresh leaves	Ethnobotanical survey	Bayengue et al. [23]
32	Clusiaceae	Garcinia kola Heckel	Bitter cola,Orogbo	south	Fruits	Sickle cell anaemia (Ethnobotanical survey)	Gbadamosi et al. [19]
33	Moringaceae	Moringa oleifera Lam		Widely distributed	Fresh/dry leaves or seed	Ethnobotanical survey	Bayengue et al. [23]
34	Amaranthaceae Herb	Amaranthus cruentus Linn.		Widely distributed	Fresh leaves	Ethnobotanical survey	Bayengue et al. [23]
35	Rhamnaceae	Zizyphus jujuba Mil		North west	Aqueous leaves extract	PHZ induced haemolytic anaemia	Gumalla et al. [5]
36	Cannabaceae	Trema orientalis	pigeon wood		Bark of the plant and H. madagascariensis bark are Boiled with water.	Ethnobotanical survey	Gbadamosi et al. [5]

37	Amaryllidaceae	Allium cepa L. Allium	Onion Albasa	North west	Bulb	Sickle cell anaemia (Ethnobotanical survey)	Gbadamosi et al. [19]
38	Apocynaceae	Rauwolfia vomitoria Afzel			50:50 ethanol/water leaves extract	Sickle cell anaemia	Abere et al. [2].
39	Leguminosae	Abrus precatorius	ju-ologbo		Root, leaves, seeds.	Ethnobotanical survey	Olowokudejo <i>et al.</i> [21]
40	Amaryllidaceae	sativum L.	Garlic	North west	Bulb	Sickle cell anaemia (Ethnobotanical survey)	Gbadamosi <i>et al</i> . [16]
41	Acanthaceae	Brillantaisia nitens Lindau			Methanol leaves extract	PHZ induced haemolytic anaemia	Akah <i>et al.</i> [26]
42	Rutaceae	Zanthoxylum xanthoxyloide	Orin ata		Bark, root	Ethnobotanical survey	Olowokudejo <i>et al.</i> [21].
43	Plantaginaceae	Scoparia dulcis	Goat weed	Widely disributed	Aqueous whole plant extract	Trypanosoma brucei induced anaemia	Orhue <i>et al.</i> [27]
44	Fabaceae	Mucuna pruriens	Velvet bean (Agbala)	south	Aqueous leaves extract	Nomal rats	Obeagu <i>et al</i> . [28].
45	Meliaceae	Khaya ivorensis			Steam,root,bark	Ethnobotanical survey	Olowokudejo <i>et al.</i> [21].
46	Acanthaceae	Eremomastax speciosa(Hochs t)			Ethanolic leaves extract	Normal rats	Okokon <i>et al.</i> [29]
47	Caricaceae	Carica papaya L.	Pawpaw Ibepe Gonda	Widely distrubuted	Leaves	Sickle cell anaemia (Ethnobotanical survey)	Gbadamosi et al. [19]
48	Fabaceae	Cajanus cajan	pigeon pea, waken turawa	Widely cultivated	Ciklavit	Sickler patients	Akinsulie et al. [30]
49	Fabaceae	Sphenostylis stenocarpa (Hoschst ex. A. Rich) Harms,	African yam bean		methanol seed extract	Phlebotomy induced anaemia	Okonkwo [29]
50	Xanthorrhoeac eae	Aloe vera (L.) Burm. f.	Medicinal aloe (Eti erin in yoruba)	Widely distributed	Leaves	Antisickling effect	Gbadamosi et al. [16]
51	Tiliaceae	Corchorus olitorus L	. (Y – ewedu, I – ahuhara)	Widely distributed	leaves	Ethnobotanical survey	Gbadamosi et al. [16]

DISCUSSION

The above table shows various medicinal plants native to Nigeria that were found to have antianaemic effects to either humans or animals at certain concentrations (where specified) according to different scholarly articles reviewed by this research. 51 plants from 35 families were documented in this review article. *Euphorbiaceae, Zingiberaceae* and *Fabaceae* family had the highest number in this research (7.84%) *then Poaceae, Asteraceae, Maliaceae, Apocynaceae, Amaryllidaceous, Amaranthaceae* and *Acantharean* (3.92% each) with the rest having 1.9% each.

The parts of the plants reported to have antianaemic properties in this article includes the leaves (46%), steam bark (22.6%) roots (13.2%), seeds (5.7%), fruits (7.5%), whole plant (3.8%), flower (1.9%), and bulb (3.8%), The identified plant parts were extracted using either organic solvents (ethanol, methanol, hexane, acetone, and petroleum ether) or water (aqueous).

The types of anaemia documented in this study includes hemolytic anaemia (35.3%) induced either by chemicals or parasitic infection (*Berghei* or *Brucei*), Sciklecell anaemia (21%), iron deficiency and blood loss anaemia (1.96%), others not specified (39%).

The resultant antianaemic effect may be due to the ability of the plant phytochemicals to protect or reverse the chemically induced oxidative damage on erythrocytes [14]. It can also be due to the ability of the plants to stimulate or accelerates the erythropoietic machinery in d bone marrow [18]. In case of sickle cell anaemia it might be due to the ability of the antioxidant in the plants to inhibit sickle cell hemoglobin polymerization, the time course for red blood cell sickling and improve the oxidant status of sickled erythrocyte [24]. Some of the plants antianaemic property might also be due to high iron content [15].

Most of the plants documented in this article are widely distributed in the country and all are traditionally used in treating various ill healths including anaemia. This could be due to the present of active compounds found distributed in various parts of the plants that acts on various targets in d body.

CONCLUSION

The findings of this study reveal that many indigenous plants around us has antianaemic potentials and most are widely distributed in the country but only a small fraction has been proven scientifically hence these potentials needs to be explored for therapeutic purposes.

REFERENCES

- 1. Nwaka, A. C., Ikechi-Agba, M. C., Okechukwu, P. U., Igwenyi, I. O., Agbafor, K. N., Orji, O. U., & Ezugwu, A. L. (2015). The effects of ethanol extracts of Jatropha curcas on some hematological parameters of chloroform intoxicated rats. *American-Eurasian Journal of Scientific Research*, 10(1), 45-49.
- Abere, T. A., Ojogwu, O. K., Agoreyo, F. O., & Eze, G. I. (2014). Antisickling and Toxicological Studies on R. vomitoria. *J Sci Pract Pharm*, 1(1), 11.
- Patrick, D., & Jay-Allemand, C. (2013). Phytochemical analysis of Phyllanthus niruri L. (Phyllanthaceae) extracts collected in four geographical areas in the Democratic Republic of the Congo. *African Journal of Plant Science*, 7(1), 9–20.
- Edeoga, H. O., Okwu, D. E., & Mbaebie, B. O. (2005). Phytochemical constituents of some Nigerian medicinal plants. African *Journal of Biotechnology*, 4(7), 685–688.
- Gummalla, P., Sravani, K., Vasanthi, C., SivaSankar, R. K., Navyaja, K., Priya, V. K. (2015). Evaluation of anti-anaemic and antiallergic activity of aqueous and methanolic extracts of ziziphus jujuba fruits in rodents. *International Journal of Experimental Pharmacology*, 5(2), 91– 95.
- De Benoist, B., Cogswell, M., Egli, I., & McLean, E. (2008). Worldwide prevalence of anaemia 1993-2005; WHO Global Database of anaemia.
- McLean, E., Cogswell, M., Egli, I., Wojdyla, D., & De Benoist, B. (2009). Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993-2005. Public Health Nutrition, *12*(4), 444–454.
- Idu, M., & Erhabor, J. (2014). Anti-anaemic activity of Jatropha tanjorensis Ellis & amp; Saroja in Rabbits. *Journal of Medicinal Plants Studies*, 2(2), 64–72.
- 9. Saravanan, V. S., & Manokaran, S. (2012). Antianaemic activity of some plants in Cucurbitaceae on phenylhydrazine-induced anaemic rats, *Thai Journal of Pharmaceutical Science*, *36*, 150–154.
- Hodges, V. M., Rainey, S., Lappin, T. R., & Maxwell, A. P. (2007). Pathophysiology of anemia and erythrocytosis Pathophysiology of anemia and erythrocytosis. *Journal of Oncology Hematology*, 64, 139–158.
- Toma I., & Kabir, Y. (2015). The effect of aqueous leaf extract of fluted pumpkin on some hematological parameters and liver enzymes in 2, 4-dinitrophenylhydrazine-induced anemic rats. *African Journal of Biochemistry Research*, 9(7), 95–98.
- 12. Shanmuga, P., Anbu, N., Parthibhan, P., & Kanakavalli, K. (2017). Preclinical Evaluation of Hematinic Potential of the Siddha Formulation Sarakondrai Chooranam using Phenylhydrazine

Induced Anaemia in rats. *International Journal of Current Research in Medical Sciences*, *3*, 48–56.

- Abubakar, F. A., Adetutu, A., Olorunnisola, O. S., Soji-Omoniwa, O., Abdulazeez, A. T., & Aborisade, A. B. (2016). Effects of selected aqueous plant extracts on hematological parameters of Plasmodium berghei infected mice. *Nig. J. Pure* & *Appl. Sci, 29*(2).
- Sani, H. L., Malami, I., Hassan, S. W., Alhassan, A. M., Halilu, M. E., & Muhammad, A. (2015). Effects of standardized stem bark extract of Mangifera indica L. in wistar rats with 2,4dinitrophenylhydrazine-induced haemolytic anaemia. *Pharmacognosy Journal*, 7(2), 89–96.
- Oladiji, A. T., Jacob, T. O., & Yakubu, M. T. (2007). Anti-anaemic potentials of aqueous extract of Sorghum bicolor (L.) moench stem bark in rats. *Journal of Ethnopharmacology*, 111, 651–656.
- Gbadamosi, I. T., & and.Yekini, A. O. (2012). Nutritional Composition of Ten Ethnobotanicals Used for the Treatment of Anaemia in Southwest Nigeria. *European Journal of Medicinal Plants*, 2(2), 140–150.
- 17. Adebayo, M. A., Enitan, S. S., Owonikoko, W. M., Igogo, E., & Ajeigbe, K. O. (2017). Haematinic properties of methanolic stem bark and fruit extracts of Ficus sur in rats pre-exposed to phenylhydrazine-induced haemolytic anaemia. *African Journal of Biomedical Research*, 20(1), 85-92.
- Folashade, K. O., & Omoregie, E. H. (2013). Journal of Medicinal Plants Research Chemical constituents and biological activity of medicinal plants used for the management of sickle cell disease *Journal of Medicinal Plants Research* A review, 7(48), 3452–3476.
- Gbadamosi, I.T. (2017). An Inventory of Ethnobotanicals Used in the Management of Sickle Cell Disease in Oyo State, Nigeria. Botany Research International, 8(4), 65–72.
- Ogbe, R. J., Abu, A., Ogbe, R. J., Adoga, G. I., & Abu, A. H. (2010). Antianaemic potentials of some plant extracts on phenyl hydrazine-induced anaemia in rabbits. Journal of Medicinal Plants Research, 4(8), 680–684.
- Dele Olowokudejo, J., Kadiri, A.B., & Travih, B. A. (2008). An Ethnobotanical Survey of Herbal Markets and Medicinal Plants in Lagos State of Nigeria. Ethnobotanical Leaflets, *12*: 851-865.
- Ologundudu, A. O., Ololade, I. A., & Obi, F. O. (2009). Effect of Hibiscus sabdariffa anthocyanins on 2, 4-dinitrophenylhydrazine-induced hematotoxicity in rabbits. *African Journal of Biochemistry Research*, 3(4), 140–144.
- Bayengue, B., Suzanne, S., Mathieu, N., Mogtomo, K., Luther, M., Annie, R., & Ngane, N. (2017). Ethnobotanical survey of medicinal plants used for treating preschool children anemia in an urban setting, Douala-Cameroon African Journal of Plant Science, *11*(5) 160-167.

- Modibbo, Y. (2014). Effects of Pterocarpus Erinaceus Stem Bark Aqueous Extract on Anemic Rats. *Scientific Research Journal*, 2(5), 2201– 2796.
- Olugbenga, I. E., Daniyan, M. O., & Taiwo, B. (2008). Elemental compositions and anti-anemic property of Harungana madagascariensis stem bark. A Journal of the Bangladesh Pharmacological Society, 4, 115–121.
- Akah, P. A., Okolo, C. E., & Ezike, A. C. (2009). The haematinic activity of the methanol leaf extract of Brillantasia nitens Lindau (Acanthaceae) in rats. African Journal of Biotechnology, 8(10), 2389– 2393.
- 27. Orhue N. E. J. & Nwanze E. A. C. (2009). Anti anaemic properties of Scoparia dulcis in

Trypanosoma brucei infected rabbits. *African Journal of Biochemistry Research*, *3*(5), 245–249.

- Obeagu, E. I., Obioma, B. E., Okechukwu, P. C. U., Emmanuel, I. O., & Ifemeje, J. C. (2014). Antianaemic potential of aqueous leaf extract of Mucuna pruriens on wister albino rats, *Int. J. Curr. Microbiol. App. Sci*, 3(2), 707–712.
- Okon, J. E., Anita, B. S., Udoh, A. E., & Akpan, M. M. (2007). Antianaemic and Antimicrobial Activity of Eremomastax speciosa. Journal of Pharmacology and Toxicology, 2(2), 196–199
- Akinsulie, A. O., Temiye, E. O., Akanmu, A. S., Lesi, F. E. A., & Whyte, C. O. (2005). Clinical Evaluation of Extract of Cajanus cajan (Ciklavit®) in Sickle Cell Anaemia. Journal of Tropical Pediatrics, *51*(4), 200–205.