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Abstract  

 

This paper utilizes weak-form variational principle to determine the nonlinear natural frequencies of highly clamped 

rectangular isotropic plates. The energy functional was formulated using weak-form variational statement on the integral 

function of the plate problem. The displacement functions were developed based on static deflections of orthogonal beam 

network. The algebraic expression for stress function was determined using direct integration process on compatibility 

equation. The amplitude of deflection which influences the geometric nonlinearity of the plate was determined using 

integration process on energy functional based on static equilibrium equations. The stiffness and mass matrices were 

developed from the expressions of energy functional based on dynamic equilibrium equations. The nonlinear natural 

frequencies were numerically computed. The validation of the results using the results from previous work found in 

literature shows satisfactory convergence, with an error of 0.034%. Conclusively, weak-form variational principle gives 

satisfactory approximation to nonlinear vibration analysis of rectangular isotropic plates. 

Keywords: Algebraic polynomial, Amplitude of deflection, Energy functional, Nonlinear natural frequency, Rectangular 

plate, Weak-form, Variational principle. 
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INTRODUCTION 
A highly clamped rectangular plate in the 

context of this paper refers to any rectangular plate with 

at least three of its edges rigidly fixed. Engineering 

analysis of clamped rectangular plates is problematic; 

and there is no known closed-form solution to clamped 

rectangular plates. Consequently, approximation 

techniques are usually employed in the solution of 

rectangular clamped plates. 

 

Practically, most of the engineering 

applications of rectangular plates are in the form of 

thin-walled structures. Furtherance to their thinness, 

two main precisions of approximation are commonly 

adopted in the rectangular thin plate’s analysis, namely 

the linear mathematical model and the nonlinear 

mathematical model. However, the linear method of 

approximation is just only but first order approximation 

[1]. In nonlinear method of approximation, the 

deflection is assumed to be appreciable compared to the 

plate thickness; and the nonlinear method of 

approximation yields solution closer to the exact 

solution to the plate problem. On the other hand, the 

resulting nonlinear differential equations from nonlinear 

method of analysis are tedious to tackle. In particular, 

the determination of a series of eigen-frequencies for 

large amplitude of vibrations of rectangular plates based 

on analytical technique approach poses highly technical 

challenges; and most often only the first mode 

frequency can be determined even with the advent of 

high speed computers [2]. Consequently, a host of 

investigators on large amplitude of vibrations employ 

different approximation techniques to tackle the 

problems of nonlinear vibration analysis of rectangular 

plates. 

 

Large amplitudes of vibrations of rectangular 

plates have for sometimes now posed interesting and 

challenging research fields. Different approximation 

techniques have been employed to investigate into large 

amplitude vibrations of rectangular plates [3,4] used 

finite element formulation to investigate large 

amplitude vibrations of rectangular plates. The 

Hierarchical finite element and Continuation methods 

were employed to study nonlinear vibration of plates 

[5]. The Spline strip method was used by [6]. Energy 

principle based on Hamilton’s principle was used by 
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[7]. An Optimal Artificial Neural Network was used to 

predict large amplitude vibrations of laminated 

composite rectangular plates based on first order shear 

deformation theory [8]. The Galerkin-iterative method 

was applied to investigate the nonlinear vibrations of 

rectangular plates by [9]. Furthermore, [10] employed 

the Harmonic Balance Computation to study the 

nonlinear frequency response of a thin plate. [11] 

studied the small-scale effect on nonlinear free 

vibration of isotropic thin nano-plate by using a 

combination of nonlocal elasticity plate theory and the 

Von Karman geometric model [2, 12, 13] published 

books that deal with nonlinear plate analysis. 

 

In energy approximation techniques, the uses 

of Hamilton’ principle, direct variational principle in 

Ritz method and residual energy method in Galerkin 

approach have been common to many investigators. 

The unabated applications of these techniques have 

demonstrated questionable monotonous characteristics 

to some classes of readership. Furthermore, the 

application of trigonometric functions in the form of 

Fourier series has been used by most of the researchers 

as approximation solutions; despite to the fact that 

trigonometric functions cannot provide satisfactory 

solutions to all the boundary conditions of rectangular 

plates.  

 

The objectives of this study shall include the 

application of weak-form variational method in 

formulating energy functional for the rectangular plate 

problem. Secondly this study is poised to develop 

algebraic polynomial functions based on orthogonal 

beam network displacement functions as shape 

functions. Finally, this study is expected to determine 

the nonlinear natural frequencies beyond the first mode 

frequency of the rectangular plates. 

 

THEORETICAL FORMULATION 
Formulation of Energy Functional 

The formulation of energy functional is based 

on the application of weak-form variational principle on 

integral function of Von Karman’s thin plate 

differential equations. The analogous Von Karman’s 

thin plate differential equations of motion are as 

expressed in Eqs. (1) and (2). 
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Where 

w = displacement functions 

F = Airy’s stress functions 

t = plate thickness 

ρ = mass density of plate materials 

q = uniformly applied lateral load 

 ̈ = second derivative of w with respect to time T 

D = flexural rigidity of the plate, defined as given in Eq. (3) 

 

  
   

  (    )
   …………………………….. (3) 

 

Where 

  = Poisson’s ratio 

 

The variational statement is applied on the integral functions of Eq. (1) as expressed in Eq. (4). 
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Where 

V(x, y) = the weighting function 

 

  
 

 
  …………………………… (5) 

 

Then integration by parts is performed on Eq. (4) to trade differentiation from w and F to V(x, y), which on 

simplification yields Eq. (6). 
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Where 

V = V(x, y) …………………….. (7) 

 

In Eq. (6), the last two integrands that are in 

the curl brackets are the natural boundary conditions; 

and each of them is identically satisfied at the 

boundaries; and as such they are dropped in the further 

discussion. The integrand in the double integration sign 

of Eq. (6) is the functional of the plate problem. 

By assuming that the plate vibrates 

harmonically and performs sinusoidal time response, 

the inertia term is simplified, and the expression for the 

functional is as expressed in Eq. (8). 
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Furthermore, for a free vibration analysis, the lateral load q is disregarded so that Eq. (8) is simplified as 

expressed in Eq. (9). 
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Where 

      …………….. (10) 

 

The General Boundary Conditions 

In dealing with geometrically nonlinear analysis of rectangular plates, the out-of-plane and in-plane boundary 

conditions are jointly considered; and these are stated as follows [12, 14, 15]: 

 

Rigidly Clamped at the four Edges (CCCC) 

         
  

  
 

   

  
           ……….…………….. (11) 

 

         
  

  
 

   

  
           ……….…………….. (12) 

 

Clamped – Clamped – Clamped – Simply Supported (CCCS) 

         
  

  
 

   

  
            ……….…………….. (13) 

 

         
  

  
 

   

  
         ……….…………….. (14) 

 

                    
    

            …………….. (15) 

 

Clamped – Clamped – Clamped – Free Edge (CCCF) 

         
  

  
 

   

  
            ……….…………….. (16) 

 

         
  

  
 

   

  
         ……….…………….. (17) 

 

                      ……….…………….. (18) 

 

Determination of Specially Energy Functional 

Eq. (9) gives generic energy functional based 

on the integral function of the plate problem; but to 

determine the specially energy functional with respect 

to any set of rectangular plate boundary conditions, the 

general boundary conditions of Eqs. (11) through (18) 

are appropriately applied. From the general boundary 

conditions, the Specially Energy Functional (SEF) for 

CCCC and CCCS rectangular plates is given as 

expressed in Eq. (19). 
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For CCCF rectangular plate, the SEF is given as expressed in Eq. (20). 
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Development of Displacement Function 

In this study, the displacement functions are 

sought in the form of algebraic polynomial displacement 

functions. In reality, each vibration mode shape of a 

rectangular plate consists of a product of two 

perpendicular motions in x- and y-coordinates 

respectively. Consequently, a rectangular plate can be 

idealized to consist of a series of imaginary orthogonal 

beam network as shown in Fig-1. 

 

 
Fig-1: Showing a Series of Orthogonal Beam Network and Deflection Configurations 

 

It is assumed that each beam element running 

along any coordinate direction is a good representative 

of other series of beam elements that run along the same 

direction. Let w(x) and w(y) denote the algebraic 

polynomial displacement functions in x- and y- 

directions respectively. Thus: 

 ( )  ∑    
    

   …………………… (21) 

 

 ( )  ∑    
   

   ……………………… (22) 

 

Where ci and dj are undetermined coefficients. 

 

Mathematically it has been established that a 

five-term polynomials provides necessary and sufficient 

satisfaction for completeness as shape functions. 

Therefore the value of k in the summation is taken to be 

four. The out-of-plane boundary conditions for clamped 

edge, simply supported edge and free edge are as given 

in Eqs. (23), (24) and (25) respectively. 

 (   )    (   )    …………………… (23) 

 

 (   )     (   )    …………………… (24) 

 

  (   )     (   )      (   )     …………………… (25) 

 

Where  (   )  represents deflection function,   (   )    (   )  and     (   )  represent first, second and third 

derivatives with respect to the coordinates respectively. 

 

Suppose the edges (1) and (3) of Fig-1 are clamped, and by invoking Eq. (21), the five term polynomial 

expression is given as in Eq. (26). 

 ( )            
     

     
  …………………… (26) 

 

By applying the boundary conditions of Eq. (23) and subsequently carrying out simplification yields Eq. (27). 
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However, to account for series of beam mode shapes running along y-direction, Eq. (27) is modified as shown in 

Eq. (28). 
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Similarly suppose the edges (2) and (4) of Fig. 1 are clamped, then the polynomial expression is: 

 ( )            
     

     
 …………………… (29) 

 

By applying the required boundary conditions and simplifying, yields Eq. (30). 
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Also, to account for series of beam mode shapes running along x-direction, Eq. (30) is modified as shown in Eq. 

(31). 

 ( )       [(
 

 
)
   

  (
 

 
)
   

 (
 

 
)
   

]…………………… (31) 

 

The rectangular plate static mode shape is the product of Eq. (28) and Eq. (31) as expressed in Eq. (32). 
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Where 

    (     )(     )…………………… (33) 

 

The parameter     is the amplitude of 

deflection function. Thus Eq. (32) is the static algebraic 

polynomial displacement function for CCCC 

rectangular plate. The same procedure is used to 

develop the static algebraic polynomial mode shapes for 

CCCS and CCCF rectangular plates; and they are as 

expressed in Eqs. (34) and (35) respectively. 
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The Stress Function 

 One of the unknown parameters in the 

expression for the energy functional is the Airy’s stress 

function F. In this work, direct integration process on 

compatibility equation of Eq. (2) is used to determine 

the expression for stress function. Thus, a repeated 

integration process on the right hand side of Eq. (2) is 

performed four times with respect to x-coordinate; and 

then four times with respect to y-coordinate as 

expressed in Eq. (36). 
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Where ∫  ∫( )  
 

 
   and∫  ∫( )  

 

 
; and for m, n = 1, 2 

 

In this study, the following designations for 

describing mode shapes are adopted: for m = n = 1, then 

w(1,1) denotes the first mode shape; for m = 1 and n = 

2, then w(1,2) denotes the second mode shape; for m = 

2 and n = 1, then w(2,1) denotes the third mode shape; 

and for m = 2 and n = 2, then w(2,2) denotes the fourth 

mode shape. For instance, at mode 1, the mode shape 

with respect to CCCC rectangular plate is as given in 

Eq. (37). 
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Therefore the corresponding algebraic stress function F11 with respect to CCCC rectangular plate evaluated 

using Eq. (36) is as expressed in Eq. (38). 
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(38) 

 

Where  

     …………………………………… (39) 

 

At any specified mode, the corresponding 

stress function is determined by substituting the 

corresponding mode shape into compatibility equation 

of Eq. (2); and then integrated using Eq. (36). 

 

Determination of Amplitude of Deflection 

Under large deflection scenario, the analysis of 

rectangular plate is shifted from rigid to flexible plate 

analysis. The rigidity parameters associated with 

flexible plates are variable, and highly depend on the 

deflection as well as the lateral loading [2]. Practically, 

the frequency of natural vibration is a function of the 

rigidity parameter of the plate; and under large 

deflection, the frequency depends on how much the 

system deviates from equilibrium position (amplitude of 

deflection). 

 

The amplitude of deflection     is unknown 

parameter associated with the mode shape; and to 

determine the amplitude of deflection, the expression 

for mode shape is appropriately substituted into the 

energy functional equation. The inertia parameter in the 

energy equation is replaced with the lateral load 

parameter. 

 

In this work, the mode shapes to be considered 

for any given set of plate boundary conditions are 

w(1,1), w(1,2), w(2,1) and w(2,2). Therefore, the 

amplitude of deflection to be determined are A11, A12, 

A21 and A22 respectively. It is assumed that the problem 

system is self-adjoint. Consequently, the weighting 

function V in the energy functional is interchanged with 

the deflection function w without loss in generality. For 

instance, by letting V = w(1,1), the integral expression 

for evaluating the amplitude of deflection A11 for 

CCCC rectangular plate is as shown in Eq. (40). 

 

∫ ∫ [(
   (   )

   )
 

  (
   (   )

    
)
 

 (
   (   )

   )
 

    (
   (   )

    
)
 

    (
   (   )

   ) (
   (   )

   )]      
 

 

 

 

∫ ∫    (   )    
 

 

 

 
…………………… (40) 

 

By carrying out double integration process and simplification on Eq. (40), an expression that simulates the 

Duffing’s type of equation is obtained as shown in Eq. (41). 
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Where  
 

 
 .  The real root of Eq. (41) in terms of A11 is given as shown in Eq. (42). 
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Thus the expressions for A12, A21, and A22 are determined using the same procedure. 

 

Determination of Stiffness and Mass Matrices 

During natural vibrations, there exist modal 

interactions among different modes. Consequently in 

this work, the mode shape w and the weighting function 

V are interactively combined to effect these modal 

interactions. Thus to determine the natural frequencies, 
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the expressions representing the energy functional are 

as given in Eqs. (19) and (20) are invoked and modified 

in accordance with these modal interactions as 

expressed  in Eqs. (48) and (49) respectively. 
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Where    and    are the stress functions 

associated with mode shapes corresponding to 

weighting function and displacement function 

respectively. For instance, to determine the stiffness 

component k11 at first mode, let V = w = w(1,1); to 

determine the stiffness component k21 = k12, let V = 

w(1,2) and w = w(1,1); to determine the stiffness 

component k31 = k13, let V = w(2,1) and w = w(1,1); to 

determine the stiffness component k41 = k14, let V = 

w(2,2) and w = w(1,1) and so on. For instance, the mode 

shapes for CCCC plate are as stated in Eqs. (50) 

through (53). 
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Then the stiffness matrix for CCCC rectangular plate is determined as follows: 
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The resulting stiffness matrix is given as expressed in Eq. (59). 

[ ]  [

            

            

            

            

]…………………… (59) 
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The same procedure is used to develop other required 

stiffness matrices for CCCS and CCCF respectively. In 

similar approach, the right hand side (RHS) of Eqs. (48) 

and (49) respectively will yield the mass matrices after 

due integration process. Thus, for CCCC rectangular 

plate, the mass matrix is determined as follows: 

 

    ∫ ∫ *( (   ))
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 …………………… (63) 

 

The resulting mass matrix is as given in Eq. (64). 

[ ]    [

            

            

            

            

]   …………………… (64) 

 

The same approach is used to develop the mass matrices for CCCS and CCCF respectively. 

 

NUMERICAL EVALUATION AND 

DISCUSSION OF RESULTS 
Natural vibrations of rectangular isotropic 

plates under geometrical nonlinearity are studied in this 

paper using weak-form variational principle. Numerical 

evaluations are required to facilitate the validation of 

the results of the present study with the results found in 

existing literature. Consequently the plate parameters 

used by [15] in his theoretical and experimental studies 

are adopted. The plate properties and dimensions are: E 

= 69GPa, ρ = 2700kgm
-3

, μ = 0.33, a = 0.515m, t = 

0.0003m, b = open, and β =   ⁄  . For instance at aspect 

ratio,    , these parameters are appropriately 

substituted and  the numerical values for the elements in 

the stiffness matrix of Eq. (59) are as shown in Eq. (65). 

 

[ ]  [

                                             
                                             
                                             
                                              

] …………………… (65) 

 

Similarly by substituting these parameters appropriately, the numerical values for the elements in the mass 

matrix of Eq. (64) are as shown in Eq. (66). 

[ ]    [

                                 
                                  
                                  
                                  

]      ……………… (66) 

 

In the matrix manipulation, suppose the difference between [ ] and [ ] is[ ], then 
[ ]  [ ]  [ ] …………………… (67) 

 

The determinant of [ ] is thus: 

   ([ ])     ([ ]  [ ])…………………… (68) 

 

For nontrivial solution of the eign-function, Eq. (68) is set equal to zero. That is: 

   ([ ]  [ ])    …………………… (69) 

 

Eq. (69) can be numerically simplified by pre-multiplying Eq. (69) by the inverse of Eq. (66) as shown in Eq. 

(70). 

   ([ ]  [ ]  [ ]  [ ])    …………………… (70) 

 

The result of the manipulation of Eq. (70) gives an expression as shown in Eq. (71). 
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   [
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]    …………………… (71) 

Where  

     …………………… (72) 

 

The solution of the resulting quartic algebraic 

equation in terms of R and subsequently in terms of   

gives the natural frequencies of vibration of the 

rectangular CCCC plate at aspect ratio equal to one. 

Therefore by carrying out the same procedure for CCCS 

and CCCF rectangular plates respectively yields the 

desired natural frequencies for the rectangular plates up 

to first four lowest natural frequencies. Thus Table-1 

presents the numerical values of nonlinear natural 

frequencies for CCCC, CCCS and CCCF rectangular 

plates based on the given plate parameters [15] at 

various aspect ratios. 
 

Table-1: The numerical Values of Nonlinear Natural Frequencies of Rectangular Isotropic Plates at Various 

Aspect Ratios 

 

From Table-1, it was observed that the 

nonlinear natural frequencies for all the sets of 

boundary conditions exhibit soft-spring type with 

respect to plate aspect ratios. Furthermore, it was 

observed that at very low aspect ratio, the fundamental 

nonlinear frequency approaches its equivalent beam 

fundamental frequency. 

 

Also, in this study, the variations of the ratios 

of nonlinear natural frequencies to linear natural 

frequencies with plate aspect ratios were examined; and 

these variations are presented in Table-2. 

 

Let   
   

  
 = ratio of nonlinear natural frequency to linear natural frequency 

Let   = Aspect ratio 
 

Table-2: Variation of the Ratios of Nonlinear to Linear Natural Frequencies with Aspect Ratios 

Boundary Condition Ratio (
   

  
) β  = 0.25 β  = 0.50 β  = 0.75 β  = 1.00 β  = 1.25 β  = 1.50 

 

CCCC 
    1.00000 1.00000 1.00008 1.00406 1.02760 1.07136 

    1.00000 1.00000 1.00005 1.00010 1.01530 1.04279 

    1.00000 1.00000 1.00006 1.00490 1.01620 1.03946 

    1.00000 1.00000 1.00007 1.00328 1.01828 1.04663 

 

CCCS 
    1.00000 1.00000 1.00084 1.01519 1.05539 1.10451 

    1.00000 1.00000 1.00061 1.00772 1.02912 1.06415 

    1.00000 1.00000 1.00053 1.01062 1.03318 1.05840 

    1.00000 1.00000 1.00075 1.01103 1.03112 1.06362 

 

CCCF 
    1.00000 1.00000 1.00004 1.00007 1.00000 1.00000 

    1.00000 1.00000 1.00022 1.00186 1.00663 1.01517 

    1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

    1.00000 1.00000 1.00025 1.00184 1.00741 1.01261 

 

 

Boundary 

Condition 

Nonlinear Natural Frequency, (rad/sec) 

Mode Aspect Ratio, β 

β = 0.25 β  = 0.36 β  = 0.50 β  = 0.75 β  = 1.0 β  = 1.25 β  = 1.50 

 

CCCC 
    640.425 320.960 172.397 89.322 63.206 53.747 50.670 

    676.967 363.289 222.893 150.737 129.930 93.965 76.401 

    1775.66 877.457 456.279 213.436 130.554 123.649 122.320 

    1816.94 920.843 503.190 267.272 190.506 159.849 147.133 

 

CCCS 
    449.157 229.946 128.671 73.042 56.515 51.350 50.012 

    497.906 284.272 189.583 140.704 117.846 87.672 73.263 

    1526.910 756.959 396.039 188.283 127.158 123.602 123.294 

    1574.730 806.889 449.375 247.901 183.338 157.669 147.266 

 

CCCF 
    151.804 88.512 60.912 47.074 43.086 41.490 40.706 

    213.099 154.296 129.791 102.302 73.586 60.936 54.549 

    652.499 335.338 187.077 117.660 114.008 112.441 111.607 

    731.443 414.379 265.742 179.608 149.568 136.017 129.167 
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From Table-2, it was observed that the ratios 

of nonlinear natural frequencies to linear natural 

frequencies with respect to aspect ratios exhibit hard-

spring type. It was also observed from Table-2 that at 

the regime of aspect ratio less than or equal to 0.5, the 

linear natural frequency equals the corresponding 

nonlinear natural frequency. For the three sets of 

boundary conditions investigated, the observation is 

almost the same. Therefore it can be inferred from this 

observation that at aspect ratio less than 0.5, the 

dynamic analysis of rectangular isotropic plates of 

boundary conditions CCCC, CCCS and CCCF can be 

done with linear mathematical model without loss in 

accuracy. 
 

The numerical value of the fundamental 

nonlinear frequency of CCCC rectangular isotropic 

plate evaluated at aspect ratio equal to 0.36 was used to 

validate the efficacy of the present study’s 

approximation technique. The numerical value (320.96 

rad/sec) obtained was compared with the previous result 

(321.071 rad/sec) due to [15] evaluated experimentally. 

The percentage error is 0.034. This comparison in view 

of statistical interpretation shows that the present 

study’s approximation technique provides very 

satisfactory approximation to any engineering precision. 
 

CONCLUSION 
This paper utilizes weak-form variational 

principle and algebraic orthogonal polynomial 

displacements based on static deflections of orthogonal 

beam network to determine the nonlinear natural 

frequencies of highly clamped rectangular isotropic 

plates. The nonlinear natural frequencies computed in 

this work, in view of statistical interpretation, are in 

excellent agreement with results from previous works 

found in literature. Therefore, it is here-upon concluded 

that the application of weak-form variational principle 

in dynamic analysis has high competitive capability 

with other approximation techniques usually employ in 

problems of dynamic analysis of rectangular isotropic 

plates. Also, it is here-unto concluded that the 

application of algebraic polynomial displacement 

functions is capable and stable in yielding satisfactory 

approximations to any set of boundary conditions of 

rectangular plates. Furthermore, it was observed that at 

plate aspect ratio less than or equal to 0.5, the linear 

natural frequencies approximate the nonlinear natural 

frequencies; and therefore it is here concluded that the 

linearized mathematical model can be employed in 

place of nonlinear mathematical model within the 

regime of low aspect ratios without loss in accuracy.  
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