INTRODUCTION

Rice (Oryza sativa L.) is a principal source of food for more than half of the world’s population, especially in Bangladesh. Rice is grown in 10.417 million hectares of land with a production of 28.91 million tons [1] in Bangladesh. The average yield of rice in Bangladesh is 4.5tha⁻¹ [2]. Rice production needs to be increased by 50% or more above the current production level to meet the rising food demand [3, 4]. The present nutritional situation of developing countries like Bangladesh is a matter of great concern since the most of the people are suffering from malnutrition [5, 6, 7] and it is great source to nutritional calories, providing 35-80% of total calorie uptake [8]. Weed infestation and interference is a serious problem in rice fields that significantly decreases yield. In Bangladesh weed infestation reduces rice grain yield by 70-80% in Aus rice, 30-40% in transplanted aman rice and 22-36% for modern boro rice cultivars [9, 10]. According to [11, 12] the losses due to infestation of weeds are greater than the combined losses caused by insect, pest and diseases in rice. Weeds not only cause huge reductions in rice yields but also increase cost of cultivation, reduce input efficiency, interfere with agricultural operations, impair quality, act as alternate hosts for several insect pests, diseases, they affect aesthetic look of the ecosystem as well as native biodiversity, affect human and cattle health. Weeds compete for nutrient, space, sunlight and consume the available moisture with crop plant resulting in crop yield reduction. Weed management in rice production is a major constraint and is expensive. Since hand weeding and other weed control methods are difficult, chemicals are the obvious and cost efficient weed control practices [13]. Chemical weed control has become popular in Bangladesh mainly due to scarcity of labour during peak growing season, and lower weeding cost. In Bangladesh the annual consumption of herbicides grew over 3420 metric tons in 2014 [14] compared to only 108 tons during 1986-87 [15], and the growth is almost exponential. In Bangladesh the traditional methods of weed control practices include preparatory land tillage, hand weeding by hoe and hand pulling. Mechanical and cultural weed control in transplanted rice is an expensive method. Especially at the time of peak period of labor crisis sometimes weeding becomes late causing drastic losses in grain yield. Nowadays use of herbicides is gaining popularity in rice culture due to their rapid effects and...
less cost involvement compared to traditional methods. Quite a lot of pre and post emergence herbicides such as butachlor, pretachlor, oxadiazone, pyrazosulfuron ethyl, ethoxysulfuron alone or supplemented with one hand weeding have been found to be useful for weed management in transplanted paddy. Use of single herbicide might be effective for only sedges or only grass or broad leaf weeds. Metsulfuron methyl + Chlorimuron ethyl has been recently developed for selective post emergence control of weeds in rice field. It can effectively control most important annual species of broad leaf weeds, grasses and sedges in transplanted rice. Furthermore such type of herbicide is almost new perception in Bangladesh for control of weeds. So to give farmers a wider choice of effective herbicide there is a need to develop environmental friendly molecules of newer chemistries with different mode of action. The present experiment was, therefore, planned to evaluate the efficacy of Metsulfuron methyl 10% + Chlorimuron ethyl 2% WP for weed suppression, to find out an appropriate dose of the herbicide and its impacts on transplanted rice cultivation.

MATERIALS AND METHODS

The experiments were conducted at the Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh situated at 23°59’33”’ N and 90°24’19”’ E at an elevation of 8.4 m from the mean sea level, and is characterized by sub-tropical climate during Aman, 2014 and Boro, 2014-2015 seasons to evaluate the efficacy of Metsulfuron methyl + Chlorimuron methylthor for weed suppression and to find out an appropriate dose of this herbicide by with its impacts on transplanted rice. The soil of the experimental site was non-calcareous dark grey flood plain [16] with pH around 6.2 and low in organic matter (1.2%). The experiment was carried out with six (6) treatments viz. i) T1 = Metsulfuron methyl 10% + Chlorimuron ethyl 2% WP @ 15 g ha⁻¹ (1.8 g a.i. ha⁻¹), ii) T2 = Metsulfuron methyl 10% + Chlorimuron ethyl 2% WP @ 20 g ha⁻¹ (2.4 g a.i. ha⁻¹), iii) T3 = Metsulfuron methyl 10% + Chlorimuron ethyl 2% WP @ 25 g ha⁻¹ (3.0 g a.i. ha⁻¹), iv) T4 = Pyrazosulfuran ethyl @ 125 g ha⁻¹ (12.5 g a.i. ha⁻¹), v) T5 = Weed free by hand weeding and vi) T6 = Control (Unwedded). All treatments were laid out in a randomized complete block design with three replications. Twenty five days of BRRI dhan49 for Aman, 2014 and thirty five days old seedlings of BRRI dhan28 for Boro, 2014-2015 were transplanted at 20 x 20 cm spacing with 2 seedlings hill⁻¹. Fertilizer was applied following BRRI recommended dose Aman: N:P:K:S= 69:10:41:11 kg ha⁻¹ and Boro; N:P:K:S= 120:19:60:24 kg ha⁻¹ [17]. Herbicides were sprayed at 1 to 2 leaf stage of weed (7 DAT in Aman, 2014 and 10 DAT in Boro, 2014-2015) with the help of a knapsack sprayer. In weed free treatment, the plots were kept weed free up to 50 DAT by hand weeding and check herbicide was Pyrazosulfuran ethyl which commercial name is Manage 10 WP. Metsulfuron methyl + Chlorimuron ethyl herbicide is innovative in Bangladesh and its phytotoxicity needs to be evaluated on rice crop. The commercial name of Metsulfuron methyl 10% + Chlorimuron ethyl 2% WP is Almix. The phytotoxicity of the herbicide to rice plants was determined by visual observations (yellowing leaves, burring leaf tips, stunting growth etc). The degree of toxicity on rice plant was measured by the following scale used by [18],

1. No toxicity
2. Slightly toxicity
3. Moderate toxicity
4. Severe toxicity
5. Toxic (plant kill)

The rating of toxicity was done within 7 days after application of herbicides. It was observed three times at 3, 5 and 7 days after application of herbicide and the mean rate was calculated from 10 sample plants of a unit plot.

Data on weed density and dry weight were taken from each plot on 40 DAT. The weeds were identified species-wise. Dry weights of weeds were taken by drying them in electric oven at 60° C for 72 hours followed by weighing by digital balance. Relative weed density (RWD), relative weed biomass (RWB) and weed control efficiency (WCE) of different weed control treatments were calculated with the following formulas [19]:

\[
\text{RWD} (%) = \left(\frac{\text{Density of individual weed species in the community}}{\text{Total density of all weed species in the community}} \right) \times 100
\]

\[
\text{RWB} (%) = \left(\frac{\text{Dry weight of a given oven dried weed species}}{\text{Dry weight of all oven dried weed species}} \right) \times 100
\]

\[
\text{SDR} (%) = \left(\frac{\text{RWD} (%) + \text{RWB} (\%)}{2} \right)
\]

\[
\text{WCE} (%) = \left(\frac{\text{Dry weight of weeds in weedy check plots} - \text{Dry weight of weeds in treated plots}}{\text{Dry weight of weeds in weedy check plots}} \right) \times 100
\]

Available Online: http://scholarsmepub.com/haya/299
Data on panicle m², grains panicle⁻¹, sterility and grain yield were collected. Yield attributes data were analyzed with analysis of variance and also graphical presentation by using STAR 2.0.1 software.

RESULTS AND DISCUSSION
Phytotoxicity of herbicides on rice plant

The degree of toxicity of the herbicide to rice plants and the symptoms produced on plant are presented in Table 1. It is observed that Metsulfuronmethyl 10% + Chlorimuron ethyl 2% WP @ 15 g ha⁻¹ showed no toxicity and Metsulfuron methyl 10% + Chlorimuron ethyl 2% WP @ 20 g ha⁻¹ showed very slight yellowing of leaves while Metsulfuron methyl 10% + Chlorimuron ethyl 2% WP @ 25 g ha⁻¹ showed temporary yellowing of leaves. It is observed that phytotoxicity symptoms were not more prominent for using this herbicide. Phytotoxicity of rice plant by combined herbicide is less which is similar to the findings of [20].

Table 1: Rating of herbicide toxicity on rice plant under different treatments

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Rating</th>
<th>Symptom observed in rice field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aman, 2014</td>
<td>Boro, 2014-15</td>
<td></td>
</tr>
<tr>
<td>Metsulfuron Methyl 10% + Chlorimuron Ethyl 2% wp @ 15 g ha⁻¹ (1.8 g a.i. ha⁻¹)</td>
<td>1.11</td>
<td>1.10</td>
</tr>
<tr>
<td>Metsulfuron Methyl 10% + Chlorimuron Ethyl 2% wp @ 20 g ha⁻¹ (2.4 g a.i. ha⁻¹)</td>
<td>1.15</td>
<td>1.17</td>
</tr>
<tr>
<td>Metsulfuron Methyl 10% + Chlorimuron Ethyl 2% wp @ 25 g ha⁻¹ (3 g a.i. ha⁻¹)</td>
<td>1.80</td>
<td>1.85</td>
</tr>
<tr>
<td>Pyrazosulfuran ethyl @125 g ha⁻¹ (12.5 g a.i. ha⁻¹)</td>
<td>1.10</td>
<td>1.12</td>
</tr>
</tbody>
</table>

Weed infestation

Aman season, 2014

In this experiment the rice field was infested with different types of weeds. The relative density of these weed species was also different (Table 2). Seven different weed species were observed in unweeded (control) plot where most dominating weeds were sedges. Among the infesting different categories of weeds, two were grasses, two sedges and three broadleaves. The weed species were belonging to the families of Poaceae, Cyperaceae, Pontederiaceae, Marsileaceae and Sphenocleaceae. The broad leaved were: Monochoria vaginalis, Marsilea minuta and Sphenoclea zeylanica; grasses were: Echinocloa crus-galli, Cynodon dactylon; and sedges were Cyperus difformis and Scirpus maritimus. Among the weed species maximum relative weed density (RWD) was observed for Cyperus difformis (31.67%) followed by Echinocloa crus-galli (29.58%) and similarly highest relative weed biomass (RWB) observed for Cyperus difformis (33.64%) followed by Echinocloa crus-galli (33.38%). Among the weeds Sphenoclea zeylanica was the minor weed with 4.21% RWD and 2.63% RWB. In this study it was also observed that broad leaf were less dominating weed species. Bhuiyan [20] found that efficacy of combined herbicide reduce the weed infestation.

Boro season, 2014-15

The number of infesting weed species was slightly different in Boro season than Aman season. These weed flora were ecologically categorized into two broad leaved species, two sedge and two grasses (Table 3). The major weed was Cyperus difformis which relative weed density (RWD) and relative weed biomass (RWB) was 32.94% and 35.68%, respectively. The second top weed was Echinocloa crus-galli which RWD was 30.71% and relative weed biomass (RWB) was 33.57%. So in Boro season broad leaf weeds were less dominating than Aman season. Combination of Trisulfuron + Pretilachlor effectively control Echinocloa and Cyperus sp. which found by [21].

Table 2: Weed composition, Relative weed density (RWD) and Relative weed biomass (RWB) in the untreated control plots in Aman season, 2014 at BRRI, Gazipur

<table>
<thead>
<tr>
<th>Name of Weed Species</th>
<th>Family</th>
<th>Class</th>
<th>RWD (%)</th>
<th>RWB (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cynodon dactylon</td>
<td>Poaceae</td>
<td>Grass</td>
<td>8.67</td>
<td>10.51</td>
</tr>
<tr>
<td>Echinocloa crus-galli</td>
<td>Poaceae</td>
<td>Grass</td>
<td>29.58</td>
<td>33.38</td>
</tr>
<tr>
<td>Cyperus difformis</td>
<td>Cyperaceae</td>
<td>Sedge</td>
<td>31.67</td>
<td>33.64</td>
</tr>
<tr>
<td>Scirpus maritimus</td>
<td>Cyperaceae</td>
<td>Sedge</td>
<td>23.54</td>
<td>24.79</td>
</tr>
<tr>
<td>Monochoria vaginalis</td>
<td>Pontederiaceae</td>
<td>Broad leaf</td>
<td>24.59</td>
<td>29.17</td>
</tr>
<tr>
<td>Marsilea minuta</td>
<td>Marsileaceae</td>
<td>Broad leaf</td>
<td>10.47</td>
<td>11.46</td>
</tr>
<tr>
<td>Sphenoclea zeylanica</td>
<td>Sphenocleaceae</td>
<td>Broad leaf</td>
<td>4.21</td>
<td>2.63</td>
</tr>
</tbody>
</table>
Table-3: Weed composition, Relative weed density (RWD) and Relative weed biomass (RWB) in the untreated control plots in Boro season, 2014-15 at BRRI, Gazipur

<table>
<thead>
<tr>
<th>Name of Weed Species</th>
<th>Family</th>
<th>Class</th>
<th>RWD (%)</th>
<th>RWB (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cynodon dactylon</td>
<td>Poaceae</td>
<td>Grass</td>
<td>13.42</td>
<td>18.21</td>
</tr>
<tr>
<td>Echinochloa crus-galli</td>
<td>Poaceae</td>
<td>Grass</td>
<td>30.71</td>
<td>33.57</td>
</tr>
<tr>
<td>Cyperus difformis</td>
<td>Cyperaceae</td>
<td>Sedge</td>
<td>32.94</td>
<td>35.68</td>
</tr>
<tr>
<td>Scirpus maritimus</td>
<td>Cyperaceae</td>
<td>Sedge</td>
<td>27.06</td>
<td>26.54</td>
</tr>
<tr>
<td>Monochoria vaginalis</td>
<td>Pontederiaceae</td>
<td>Broad leaf</td>
<td>20.83</td>
<td>29.38</td>
</tr>
<tr>
<td>Marsilea minuta</td>
<td>Marsileaceae</td>
<td>Broad leaf</td>
<td>12.59</td>
<td>14.26</td>
</tr>
</tbody>
</table>

Weed ranking
The summed dominance ratio (SDR) is an important pointer of showing ranking of weeds. The most dominant weeds in Aman season, 2014 were Cyperus difformis, Echinochloa crus-galli, Scirpus maritimus and Monochoria vaginalis (Figure 1).

![Summed dominance ratio (SDR) of infesting weeds](image)

CYN=Cynodon dactylon, ECH= Echinochloa crus-galli, CYP=Cyperus difformis, SCI=Scirpus maritimus, MON=Monochoria vaginalis, MAR=Marsilea minuta, SPH=Sphenoclea zeylanica

Fig-1: Summed dominance ratio (SDR) of infesting weeds

Weed control efficiency (WCE)
Metsulfuron methyl + Chlorimuron ethyl exhibited by lower weed biomass as well as higher weed control efficiency in all the growing seasons. Weed control efficiency improved with increases of herbicide dose irrespective of weed species. Treatment, T₁ controls all the weeds less than 80% whereas T₂, T₃ and T₄ (check) control Echinochloa crus-galli, Cyperus difformis, Scirpus maritimus and Monochoria vaginalis more than 80% in Aman season (Table 4). The trend of weed control efficiency in Boro, 2014-15 was almost similar as Aman, 2014. All treatment controls most of the weeds more than 80% except T₁. Treatment, T₂, T₃ and T₄ controls Echinochloa crus-galli, Cyperus difformis, Scirpus maritimus and Monochoria vaginalis more than 80% (Table 5). It was evident from the study that the post emergence herbicide Metsulfuron methyl + Chlorimuron ethyl @ 20 g ha⁻¹ and 25 g ha⁻¹ was effective for controlling weed than other doses of that herbicide. [23] reported that the mixture of herbicides gave 80% control of annual weeds.
Yield and yield attributes

Grain yield is the function of an interaction among various yield components, which are affected differentially by the growing conditions and crop management practices. From Table 6 it was found that all the treatments significantly increased rice grain yield over unweeded control plot. In Aman season, 2014, the highest grain yield (5.18 t ha\(^{-1}\)) was recorded in the weed free treatment which was statistically similar to treatments \(T_2\) and \(T_4\) producing grain yields of 5.10 and 4.99 t ha\(^{-1}\), respectively. Minimum grain yield (3.21 t ha\(^{-1}\)) was found in weedy check plots as compared to weed free treatment due to high weed density which resulted in low yield. Treatment wise boxplot of yield attributes in Aman season, 2014 confirm that most of the yield contributing characters were showed similar range in \(T_2\), \(T_4\) (check) and \(T_5\) (weed free) treatments; whereas \(T_6\) was outside of the normal range and its data was also in disperse condition than other treatments due to severe weed infestation (Figure 2).

Similar trend of results was observed during the Boro, 2014-15 where unweeded control (\(T_6\)) produced minimum number of panicles m\(^{-2}\), grains panicle\(^{-1}\) and high sterility which resulting lowest grain yield (3.37 t ha\(^{-1}\)). The minimum number of panicles m\(^{-2}\) in the control plot was the result of higher competition for nutrient, air space, light and water between crop plants and weeds. Hasanuzzaman [24] reported similar results. Maximum grain yield of 5.81 t ha\(^{-1}\) that was recorded with \(T_2\) treatment could be due to lower weed-crop competition at crop growth stages. In Boro season, 2014-15; \(T_2\), \(T_4\) (check) and \(T_5\) (weed free) treatments are in similar range in boxplot of yield attributes (Figure 3). Metsulfuron methyl + Chlorimuron ethyl @ 15, 20, 25 g ha\(^{-1}\) gave effective control of grass, sedge and broad leaf weeds lead to increased grain yield. Herbicide treatments contributed to higher yield performance compared to control in all the growing seasons [12].
Table-6: Effect of Metsulfuron methyl + Chlorimuron ethyl on yield of transplanted rice at BRRI, Gazipur

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Panicles m^{-2}</th>
<th>Grains panicle^{-1}</th>
<th>Sterility (%)</th>
<th>Grain yield (t ha^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₁</td>
<td>224</td>
<td>265</td>
<td>104</td>
<td>115</td>
</tr>
<tr>
<td>T₂</td>
<td>232</td>
<td>283</td>
<td>107</td>
<td>115</td>
</tr>
<tr>
<td>T₃</td>
<td>219</td>
<td>260</td>
<td>97</td>
<td>112</td>
</tr>
<tr>
<td>T₄</td>
<td>237</td>
<td>283</td>
<td>103</td>
<td>114</td>
</tr>
<tr>
<td>T₅</td>
<td>236</td>
<td>287</td>
<td>107</td>
<td>117</td>
</tr>
<tr>
<td>T₆</td>
<td>186</td>
<td>214</td>
<td>78</td>
<td>93</td>
</tr>
<tr>
<td>CV (%)</td>
<td>5.96</td>
<td>3.64</td>
<td>2.69</td>
<td>3.83</td>
</tr>
<tr>
<td>LSD₀.₀⁵</td>
<td>19.12</td>
<td>17.59</td>
<td>4.87</td>
<td>7.76</td>
</tr>
</tbody>
</table>

T₁= Metsulfuron methyl 10% + Chlorimuron ethyl 2% wp @ 15 gha⁻¹, T₂= Metsulfuron methyl 10% + Chlorimuron ethyl 2% wp @ 20 gha⁻¹, T₃= Metsulfuron methyl 10% + Chlorimuron ethyl 2% wp @ 25 gha⁻¹ and T₄= Pyrazosulfuran ethyl @ 125 gha⁻¹, T₅= Weed free and T₆= Unweed (control)

Fig- 2: Boxplot of yield attributes in Aman season, 2014 at BRRI, Gazipur

T₁= Metsulfuron methyl 10% + Chlorimuron ethyl 2% wp @ 15 gha⁻¹, T₂= Metsulfuron methyl 10% + Chlorimuron ethyl 2% wp @ 20 gha⁻¹, T₃= Metsulfuron methyl 10% + Chlorimuron ethyl 2% wp @ 25 gha⁻¹, T₄= Pyrazosulfuran ethyl @ 125 gha⁻¹ and T₅= Weed free and T₆= Unweed (control)
Fig-3: Boxplot of yield attributes in Boro season, 2014-15 at BRRI, Gazipur

T1 = Metsulfuron methyl 10% + Chlorimuron ethyl 2% wp @ 15 g ha⁻¹, T2 = Metsulfuron methyl 10% + Chlorimuron ethyl 2% wp @ 20 g ha⁻¹, T3 = Metsulfuron methyl 10% + Chlorimuron ethyl 2% wp @ 25 g ha⁻¹, T4 = Pyrazosulfuran ethyl @ 125 g ha⁻¹ and T5 = Weed free and T6 = Unweed (control)

CONCLUSION

Based on the results, yield and yield attributing parameters and weed dynamics were greatly influenced by different weed management practice. Metsulfuron methyl 10% + Chlorimuron ethyl 2% wp @ 25 g ha⁻¹ showed a good weed control efficiency but slightly phytotoxity found in this dose. So it may be suggested from this experiment that Metsulfuron methyl 10% + Chlorimuron ethyl 2% wp @ 20 g ha⁻¹ applied at 1 to 2 leaf stage of weed may be used for effective weed control option instead of hand weeding at peak period of labor for less weed infestation in transplanted rice.

REFERENCES

2. BRRI (Bangladesh Rice Research Institute). (2016). Adhunik Dhaner Chas. Bangladesh Rice Research Institute, Joydebpur, Gazipur, Bangladesh.

17. BRRI (Bangladesh Rice Research Institute). (2013). AdhunikDhaner Chas. Bangladesh Rice Research Institute, Joydebpur, Gazipur, Bangladesh.

Available Online: http://scholarsmepub.com/haya