Prediction Model with Selection of Best Prediction Algorithm for Big Data
S. Banumathi¹*, A. Aloysius²
¹Assistant Professor, Department of Computer Science, Holy Cross College, Trichy, Tamil Nadu, India
²Assistant Professor, Department of Computer Science, St. Joseph’s College, Trichy, Tamil Nadu, India

Abstract: Big data can be defined as high volume, high velocity and high variety of data that require high performance processing. Predictive modelling is a process of creating a model to predict the future behavior from the data. A predictive model is made up of predictors which are factors that influence future results. A Proposed prediction model is identifies best prediction algorithm by evaluating the performance of an algorithm. The model contains preprocessing module and predicting module which trailed by performance evaluation to find best prediction algorithm. The preprocessing module emphasizes flow of preprocessing methods. The prediction module combines various efficient algorithms to prediction, amid them the best prediction algorithm can be identified by performance evaluation measurement.

Keywords: Big data, Prediction model, Prediction Algorithm, Data Preprocessing Methods.

INTRODUCTION
In the recent domain we incredulous with dealing with petabytes of data. The presence of big data offers both an opportunity as well as challenges to analyses. The term big data was created to define the collection of large amounts of data in structured, semi-structured, or unstructured formats in large databases, file systems, or other types of repositories, and the processing of this data in order to produce an analysis and synthesis of the trends and actions in real or almost real-time[4]. Out of the above amounts of data, the unstructured data needs more real-time analysis and bears more valuable information to be discovered, providing a more in-depth understanding of the researched subject.

It is also the unstructured data which incurs more challenges in collecting, storing, organizing, classifying, analyzing, as well as managing [2].

A proportion of development has been made in progressing the capability to process, store, and analyze big data. In addition to the big data computing capability, the rapid advances in using intelligent data analytics techniques drawn from the emerging areas of artificial intelligence (AI) and machine learning (ML) which provide the ability to process massive amounts of diverse unstructured data that is now being generated daily to extract valuable actionable knowledge[3, 7]. There are four types of analytics namely prescriptive, predictive, diagnostic, and descriptive.

PREDICTIVE ANALYTICS
Predictive analytics refers to a technology that learns from experience to predict the future behavior of individuals in order to drive better decisions. The need to devise a new tool for predictive analytics for both types increases rapidly. Predictive analytics encompasses data science, machine learning, predictive and statistical modeling and outputs empirical predictions based on given input empirical data. The underlying premise is that future can be predicted on the basis of the past experience. The predictive analytics involves data collection, data analysis, data modeling and visualization of data. The analytics has three types of models Predictive model, Descriptive model and Decision model. Predictive modelling is a process of creating a statistical or mathematical model to predict the future behavior from the data set. A predictive model is made up of predictors which are factors that influence future results [6]. The selection of prediction variable influence the prediction accuracy in the model selection [8]. The Descriptive model quantifies the relationships between data to classify into groups. The decision model involves predicting decision by comprise all the data variables and find relationship between data elements.

PREDICTION MODEL
Prediction model involves the process of creating, testing and validating a model to best predict the probability of an outcome. The model creation consists of one or more algorithms for the data set. After creation, the model is tested and validated for
evaluating the best prediction model which fitted for the
data set selected. The process of model involves
running of more than one algorithm on data set to find
predictions [5]. The model process is an iterative
process which can create multiple models and finally
arriving the best fit model. This paper proposed a new
prediction model Fig. 1 to find best prediction
algorithm. This model consists of preprocessing module
and predictive module, evaluation module. The
outcome from the evaluating module results the best
prediction algorithm.

Fig-1: Prediction Model

PREPROCESSING MODULE

Data preprocessing methods can be divided
into instance based methods and regression based
methods. The Preprocessing methods are used to
eliminate unwanted things in the data set. Different
preprocessing techniques are used to make the data for
testing and training. The information is retrieved in the
form of unstructured and preprocessing methods is
applied to make data suitable for further analysis [9].
Tokenization is the process of extracting bags of cleaner
terms from raw comments by deleting stop words and
punctuation, compressing redundant character
repetitions and deleting IDs or name used in the text for
messaging purposes. For removing stop word, stop
word dictionary maintained and used which contain all
stop words. Each word of comments is compared with
this dictionary and the matched word gets removed
from comment. The User generated comments often
contains the slang words. Slang word translation means
converting the slang words like lol, omg etc, into their
standard form. The Internet Slang Word Dictionary is
used for this and then add them to the comments.
Stemming means a group of different words share the
same meaning. It is the process of reducing words
which share the same meaning. We used stem word
dictionary for grouping all different words of same
meaning. In URL removal URLs in the data set is
removed in which many users add URL. These URLs
make the process of applying prediction algorithm more
complex. So the URL’s are removed. Then the feature
selection algorithm is applied to select the features for
making the data set into training and testing.
PREDICTION MODULE

In this proposed model the prediction module includes various evolutionary algorithms which used for prediction. Each algorithm has their own features as pros and cons. The tool has been used to apply an algorithm to data. History cannot always predict future: Using relations derived from historical data to predict the future implicitly assumes there are certain steady-state conditions or constants in the complex system. This is almost always wrong when the system involves people. The issue of unknown unknowns: In all data collection, the collector first defines the set of variables for which data is collected. However, no matter how extensive the collector considers his selection of the variables, there is always the possibility of new variables that have not been considered or even defined, yet are critical to the outcome.

EVALUATION MODULE

The proposed evaluation module considers performance evaluation of various algorithms used in prediction module. Performance evaluation usually measured as the terms of mean square error and average relative error. This module evaluates the performance analysis based on the error values. The comparison of error measurement values will identify the best prediction algorithm for given data.

CONCLUSION

In this paper a new prediction model proposed with four phases. Each phase get the input from behind phase. They illustrated as modules, each module processes and as the overall frame work output will be the best prediction algorithm for big data. This increase the credibility of an algorithm in prediction. The future work will experiment the framework with streaming data as input and identify the prediction algorithm which will best suitable to data.

REFERENCES