Measles virus belonging to the genus Morbillivirus in the family Paramyxoviridae. Measles virus is transmitted by aerosolized secretion deposit on upper respiratory tract mucosal surfaces. Measles is a highly infectious disease characterized by fever, respiratory symptoms, redness of eyes & maculopapular rash. The study was conducted in tertiary care hospital, Jamnagar. Children’s 0-15 years of age with suspected case of measles symptoms like fever, cough, redness of eyes & maculopapular rash attending at Hospital which included in the study. Serum samples were screened for measles IgM by ELISA method. Out of 143 samples, total 18 (12.59%) were positive for measles IgM Ab. among this 10 (55.56%) male and 08 (44.44%) female and 13 (72.20%) were 0-5 years of age and 05 (27.80%) were 5-20 years of age. This study recognized age, nutritional status of children, socioeconomic status vaccination status of children as important demographic and risk factor of measles virus infection in children.

Keywords: Measles virus, Maculopapular rash, Aerosolized secretion, IgM, ELISA.
between 2000 and 2013, with about 85% of children worldwide being currently vaccinated [3]. Once a person has become infected, no specific treatment is available [3], but supportive care may improve outcomes [3]. This may include giving oral rehydration solution (slightly sweet and salty fluids), healthy food, and medications to control the fever [3, 7] Antibiotics may be used if a secondary bacterial infection such as pneumonia occurs [3]. Vitamin A supplementation is also recommended in the developing world [3].

Measles affects about 20 million people a year [1], primarily in the developing areas of Africa and Asia [6]. No other vaccine-preventable disease causes as many deaths [8]. In 1980, 2.6 million people died of it [6], and in 1990, 545,000 died; by 2014, global vaccination programs had reduced the number of deaths from measles to 73,000 [10, 11]. The risk of death among those infected is usually 0.2% [10], but may be up to 10% in people with malnutrition [6]. Most of those who die from the infection are less than five years old [6].

The classic symptoms include a four-day fever (the 4 Ds) and the three C's—cough, coryza (head cold, fever, sneezing), and conjunctivitis (red eyes)—along with fever and rashes [12]. Fever is common and typically lasts for about one week; the fever seen with measles is often as high as 40 °C (104 °F) [13].

Koplik’s spots seen inside the mouth are diagnostic for measles, but are temporary and therefore rarely seen [12]. Koplik’s spots are small white spots that are commonly seen on the inside of the cheeks opposite the molars [14]. Recognizing these spots before a person reaches their maximum infectiousness can help reduce the spread of the disease [15].

The characteristic measles rash is classically described as a generalized red maculopapular rash that begins several days after the fever starts. It starts on the back of the ears and, after a few hours, spreads to the head and neck before spreading to cover most of the body, often causing itching. The measles rash appears two to four days after the initial symptoms and lasts for up to eight days. The rash is said to "stain", changing color from red to dark brown, before disappearing [16]. Overall, the disease from infection with the measles virus usually resolves after about three weeks [17].

Complications: Complications with measles are relatively common, ranging from mild complications such as diarrhea to serious complications such as pneumonia (either direct viral pneumonia or secondary bacterial pneumonia), bronchitis (either direct viral bronchitis or secondary bacterial bronchitis), otitis media [18], acute brain inflammation [19] (and very rarely SSPE—subacute sclerosing panencephalitis) [20], and corneal ulceration (leading to corneal scarring) [21].

A specific drug treatment for measles, ERDPRP-0519 has shown promising results in animal studies, but has not yet been tested in humans [22, 23].

In India, measles was the major cause of mortality and morbidity in the pre-vaccination era. The major factors which determine the occurrence of the measles outbreak are, accumulation of the susceptible population, illiteracy, poor hygiene, low income, overcrowding and a refusal for vaccines [24]. The measles immunization coverage in India which ranged from 42.2-58.8%, suggested that there was a gradual increase in the coverage [25]. A nationwide coverage evaluation survey which was conducted by UNICEF in 2009-documented 74.1% and 78% measles immunization coverages among children who were aged 12-24 months in India and Gujarat respectively [26]. Because of the increase in the measles vaccine coverage, there is a reduction in the number of outbreaks and this has changed the epidemiological pattern which involves older children [27].

The new Strategic Plan presents a five-pronged strategy to cut global measles deaths by at least 95% by 2015 compared with 2000 levels and to achieve measles and rubella elimination in at least five WHO regions by 2020 [28]. The strategies include:

- High vaccination coverage;
- Monitoring spread of disease using laboratory-backed surveillance;
- Outbreak preparedness and response and measles case management;
- Communication and community engagement; and
- Research and development.

The member states of the United Nations have agreed to eliminate measles and rubella, and bring about an end to the associated deaths in newborns and children by 2030, and thus aid in the accomplishment of the Sustainable Development Goals [6]. In India, more than 2.5 million children acquire measles infection, while close to 49,000 infected children die each year, which in itself accounts for 37% of the disease-specific deaths worldwide [6]. The aim of the campaign is to reach more than 400 million children (aged 9 months to 15 years) in the next couple of years and administer a single shot of MR vaccine regardless of their earlier disease status [6]. The plan is to provide the vaccine free of cost across the states in schools, health facilities, and in outreach sites [6].

MATERIALS AND METHODS

Study area

The study conducted in Microbiology laboratory of Tertiary Care Hospital, Jamnagar where samples of suspected measles patients from OPD, indoor patients, CHC and PHC of Jamnagar district. Total 143 blood sample were collected by venepuncture under aseptic precaution and centrifuge, the serum was
separated for investigation. The anti-measles virus IgM ELISA kit (Calbiotech Measles IgM ELISA) brought at room temperature for testing. Negative control, positive control, and calibrator are ready to use. Prepare 1:21 dilution of test samples, by adding 10 µl of the sample to 200 µl of sample diluent. Mix well. Dispense 100 µl of diluted sera, calibrator and controls into the appropriate wells. For the reagent, blank, dispense 100ul sample diluent in 1A well position. Tap the holder to remove air bubbles from the liquid and mix well. Incubate for 20 minutes at room temperature. Remove liquid from all wells. Wash wells three times with 300 µl of 1X wash buffer. Blot on absorbance paper or paper towel. Dispense 100 µl of enzyme conjugate to each well and incubate for 20 minutes at room temperature. Remove enzyme conjugate from all wells. Wash wells three times with 300 µl of 1X wash buffer. Blot on absorbance paper or paper towel. Dispense 100 µl of TMB substrate and incubate for 10 minutes at room temperature. Add 100 µl of stop solution. Read O.D. at 450 nm using ELISA reader within 15 min. A dual wavelength is recommended with reference filter of 600-650 nm.

RESULTS AND DISCUSSION

In this study total 143 serum samples of suspected case of measles virus infection, collected and processed for measles IgM antibody test. Total 18 samples found positive for measles IgM, so seroprevalence of Measles IgM antibody was 12.59% (Fig-1).

<table>
<thead>
<tr>
<th>Table-1:</th>
<th>Total Samples</th>
<th>Positive</th>
<th>Seroprevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>143</td>
<td>18</td>
<td>12.59%</td>
</tr>
</tbody>
</table>

Out of 143 serum samples 85 was male and 58 were female. Out of total 85 males 10 were positive for measles IgM antibody and out of 58 females 08 were positive for measles IgM antibody (Fig-2).

<table>
<thead>
<tr>
<th>Table-2:</th>
<th>Sex</th>
<th>Total Samples (n= 143)</th>
<th>Positive (n=18)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>85</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>58</td>
<td>08</td>
</tr>
</tbody>
</table>

Among the total 143 serum samples 82 were belongs to 0-5 years of age and 61 were belongs to > 5 years of age. There were 13 positive cases for measles IgM antibody from 0-5year age group and 05 positive cases from > 5 year of groups (Fig-3).
Table-3:

<table>
<thead>
<tr>
<th>Age Group (In Years)</th>
<th>Total Samples (n=143)</th>
<th>Positive (n=18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5</td>
<td>82</td>
<td>13</td>
</tr>
<tr>
<td>>5</td>
<td>61</td>
<td>05</td>
</tr>
</tbody>
</table>

Fig-3:

CONCLUSIONS

The finding of this study confirms that the presence of MV was more common in young age children (most of <5 years of age group) and in male patients in Jamnagar district during study period and still poses a public health problem, despite the availability of a safe and vaccine. Therefore, it is important for health providers and policy makers to recognize the health implications of this virus, review the vaccination age of infants, and intensity vaccination campaign programs.

ACKNOWLEDGEMENT

The author thanks to their colleagues, the faculty, the laboratory staff of the Microbiology Department for provision of reagents and technical advice. They are grateful for the cooperation of those patients who participated in this study.

REFERENCES

Available online: http://scholarsmepub.com/sjpm/

