The Levels Of Blood Glucose And Hemoglobin Among Malaria Infected Students In Nnamdi Azikiwe University, Nnewi, Anambra State, Southeast Nigeria

Ezeugwunne I.P¹, Ogbodo E.C², Anuligo U.F³, Odumodu L.O⁴, Analike R.A⁵, Onuora L.J⁶, Obi-Ezeani C.N⁶, Onyebule O.A⁶, Oguaka V.N⁶, Amah A.K⁶

¹Department of Human Biochemistry, Faculty of Basic Medical Sciences, Nnamdi Azikiwe University, Nnewi, Nigeria
²Department of Medical Laboratory Science, Faculty of Health Sciences, Nnamdi Azikiwe University, Nnewi, Nigeria
³Department of Environmental Health Science, Faculty of Health Sciences, Nnamdi Azikiwe University, Nnewi, Nigeria
⁴Department of Chemical Pathology, Faculty of Medicine, Nnamdi Azikiwe University, Nnewi, Nigeria
⁵Department of Chemical Pathology, Chukwuemeka Odumegwu Ojukwu University, Awka, Nigeria
⁶Department of Human Physiology, College of Medicine, Imo State University, Owerri, Nigeria

Abstract: This study was designed to investigate the levels of blood glucose and hemoglobin among malaria infected students in Nnamdi Azikiwe University, Nnewi, Anambra State, Southeast Nigeria. A total of 100 participants (75 malaria infected and 25 control subjects) aged between 18 and 30 years were randomly recruited for the study. Thereafter, 5mls of blood sample each was collected from the subjects and dispensed in unit quantity into fluoride oxalate and EDTA bottles respectively for the determination of malaria parasites, hemoglobin (Hb) and fasting blood glucose levels respectively using standard laboratory methods. The results revealed no significant difference in the mean fasting blood glucose level (p>0.05), but there was a significant decrease in the mean hemoglobin level in malaria infected students than in control (p=0.000) respectively. Also, there was no significant difference in the mean values of fasting blood glucose level obtained between students with heavy malaria infection and those with moderate malaria parasitemia (p>0.05), while the mean hemoglobin level observed in the students with heavy malaria parasitemia was significantly lower compared with students with moderate malaria parasitemia (p=0.000). The implication of this finding is that malaria infection depletes the hemoglobin level in infected persons, thus predisposing them to the risk of anaemia.

Keywords: Malaria infection, Fasting blood glucose, Hemoglobin, students, moderate and heavy malaria parasitemia.

INTRODUCTION

Malaria remains one of the most critical public health concerns in the world, causing high rate of morbidity and mortality worldwide. Malaria is a mosquito borne disease in humans and animals [1]. It is caused by parasitic protozoans of the genus plasmodium and transmitted through the bite of an infected female anopheles mosquitoes including Anopheles funestus, Anopheles moucheti, Anopheles gambiae and Anopheles arabiensis [2, 3]. Five common plasmodium species are known to infect humans including Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium knowlesi, and Plasmodium malariae; with P. falciparum being the most dangerous species among them. Malaria infection is characterized by the following symptoms: fever, rigors, chills, profuse sweating, headache and vomiting [4]. These symptoms may be attributed to the waste and toxins which are liberated from the destruction of the red blood cell by plasmodium [4]. Of the plasmodium species infecting man, P. falciparum is responsible for the vast majority of severe disease and significant morbidity. P. vivax has also been increasingly recognized as causing potentially severe clinical disease [5], including renal and respiratory syndromes as well as severe anemia and variations of cerebral malaria [6]. Also, recently, P. knowlesi has been shown to cause severe clinical disease including syndromes of anemia, respiratory and renal impairment [7]. However, the relative mortality and prevalence of severe disease in vivax and knowlesi is less than falciparum [8]. Severe disease is commonly manifested as cerebral malaria, anemia and metabolic disturbance; with additional complications such as renal and hepatic dysfunction frequent in adults [9].

According to the World Health Organization, in 2016, there were approximately 216 million cases of malaria resulting in 445, 000 deaths globally [10]; with 90% of malaria cases and 91% of malaria deaths occurring in African countries [10].

In Nigeria, malaria is a major public health problem where it accounts for more cases and deaths than any other country in the world. Malaria is a risk for
about 97% of Nigeria’s population [11] and affects over 60% of the Nigeria’s population annually [12]. The prevalence of malaria infection has been widely reported in various parts of Nigeria ranging from 35.7% - 80.5% [13-21]. Also, some previous studies have reported significant reductions in hemoglobin levels of patients with malaria parasitemia [22, 23], and this has significant negative implications on the health of the Nigerian population in which malaria parasitemia is endemic. Therefore, this study investigated the levels of blood glucose and hemoglobin among malaria infected students in Nnamdi Azikiwe University, Nnewi, Anambra State, Southeast Nigeria.

MATERIALS AND METHODS

Research Design and Sample Collection

This is an experimental study designed to assess the blood glucose and hemoglobin levels among malaria infected students in Nnamdi Azikiwe University, Nnewi, Anambra State, Southeast Nigeria. A total of 100 participants (75 malaria infected and 25 control subjects) aged between 18 and 30 years were randomly recruited for the study. Thereafter, 5mls of blood sample each was collected from the subjects and dispensed in unit quantity into fluoride oxalate and EDTA bottles respectively for the determination of malaria parasites, hemoglobin level, and blood glucose levels respectively.

Inclusion and exclusion criteria

Apparently healthy male and female students aged between 18 and 30 years were recruited for the study while those who were younger 18 years or older than 30 years and who were sick and on anti-malaria drugs were excluded from the study.

Diagnosis of Malaria

Thick and thin films were prepared and stained with Giemsa stain for parasite identification and quantification using standard methods as described by WHO [24], assuming a leukocyte count of 8000µL⁻¹. Films were examined microscopically for the presence of malaria parasites within red blood cells in thin films whereas, the ring forms, trophozoites and gametocytes were noted for in thick films. A smear was considered negative for malaria parasites if no parasites are seen after examining at least 100 microscopic fields.

Estimation of fasting blood glucose level

Fast blood glucose estimation was done using oxidase method as described by Tietz *et al.*, [25].

Determination of hemoglobin level

Hemoglobin level was determined using Mythic 22 automated hematology analyzer.

Ethical Consideration

This was sought and obtained from Faculty of Health Sciences and Technology Ethical Committee, Nnewi. Informed consent was obtained from participants prior the commencement of the study.

Statistical analysis

Data obtained were tabulated and analyzed using SPSS version 20.0 (SPSS Inc. Chicago, IL, USA). Student’s t-test was employed in comparing means and results expressed as Mean±SD. P<0.05 was considered statistically significant.

RESULTS

The mean age (years) of students with malaria parasitemia (20.52±1.91) was not significantly different compared with control (19.96±1.94), (p>0.05). Also, the mean fasting blood glucose level (mmol/l) did not differ significantly between students with heavy malaria infection and those with moderate malaria parasitemia (p>0.05). However, the mean hemoglobin level observed in the students with heavy malaria parasitemia was significantly lower compared with students with moderate malaria parasitemia (p=0.000), (See table-1).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Age (years)</th>
<th>Fast blood glucose (mmol/l)</th>
<th>Hemoglobin (g/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaria positive (n=75)</td>
<td>20.52±1.91</td>
<td>3.78±0.70</td>
<td>10.92±0.81</td>
</tr>
<tr>
<td>Malaria negative (n=25)</td>
<td>19.96±1.94</td>
<td>3.86±0.76</td>
<td>11.86±0.43</td>
</tr>
<tr>
<td>t-value</td>
<td>0.132</td>
<td>0.254</td>
<td>12.755</td>
</tr>
<tr>
<td>p-value</td>
<td>0.214</td>
<td>0.663</td>
<td>0.000*</td>
</tr>
</tbody>
</table>

*Statistically significant at p<0.05.

Table-1: Comparisons of Mean (±SD) Age, Fasting blood glucose and Hemoglobin levels in malaria positive and malaria negative students

The mean age of students with heavy malaria parasitemia was not significantly different than in those with moderate malaria parasitemia (p>0.05). Also, there was no significant difference in the mean values of fasting blood glucose level obtained between students with heavy malaria infection and those with moderate malaria parasitemia (p>0.05). However, the mean hemoglobin level observed in the students with heavy malaria parasitemia was significantly lower compared with students with moderate malaria parasitemia (p=0.000), (See table-2).
DISCUSSION
The present study revealed no significant difference in the mean fasting blood glucose level of malaria infected students when compared with control. This may suggest that malaria parasitemia has no effect on the blood glucose level in the subjects studied. This finding is in contrast with the reports of some previous similar studies [26, 27].

In this study, the result showed a significant decrease in the mean hemoglobin level in malaria infected students than in control. This implies that malaria parasitemia has a negative effect on the hemoglobin level and induces a reduction in hemoglobin concentration which results in anemia in the subjects. Our finding is in consonance with the reports of previous similar studies [28, 29, 27, 30, 31].

Furthermore, there was no significant difference in the mean values of fasting blood glucose level observed between students with heavy malaria parasitemia and those with moderate malaria infection. However, the mean hemoglobin observed in the students with heavy malaria parasitemia was significantly lower compared with students having moderate malaria infection. This indicates that with increasing level of malaria parasitemia, there is a corresponding reduction in the hemoglobin concentration, so that individuals having heavy malaria parasitemia suffer more severe anaemia than those with moderate malaria infection. This finding agrees with the report of Kotepui et al., [22].

CONCLUSION
The present study revealed no significant difference in the mean fasting blood glucose level; with a significant reduction in the mean hemoglobin concentration in malaria infected students than in control which implies that malaria infection induces anemia in infected subjects. Also, no significant difference was observed in the mean values of fasting blood glucose level between students with heavy malaria parasitemia and those with moderate malaria infection but the mean hemoglobin concentration observed in the students with heavy malaria parasitemia was significantly lower compared with students having moderate malaria infection suggesting more severe anemic outcomes in subjects with heavy malaria parasitemia.

REFERENCES

Available online: http://scholarsmepub.com/sjm/

